
Original Paper

Machine Learning Ensemble Investigates Age in the
Transcriptomic Response to Spaceflight in Murine Mammary
Tissue: Observational Study

James A Casaletto1, BS, MS, PhD; Tyler Zhao2; Jay Yeung2; Abigail Lee2; Amaan Ansari2,3, BSc; Amber Fry2;
Arnav Mishra2; Ayush Raj2; Kathryn Sun2; Sofia Lendahl2, BA; Willy Guan2; Melissa S Cline4, PhD; Sylvain V
Costes5

1Blue Marble Space Institute of Science, Seattle, WA, United States
2Student Association for Applied Statistics (SAAS), University of California, Berkeley, Berkeley, CA, United States
3University of Mannheim, Mannheim, Germany
4Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States
5NASA Ames, Mountain View, CA, United States

Corresponding Author:
James A Casaletto, BS, MS, PhD
Blue Marble Space Institute of Science
600 1st Ave, First Floor
Seattle, WA 98104
United States
Phone: 1 206 775 8787
Email: james.casaletto@gmail.com

Related Articles:
Preprint (bioRxiv): https://www.biorxiv.org/content/10.1101/2025.02.17.638732v1
Peer-Review Report by Sylvester Sakilay, Mitchell Collier, Arya Rahgozar, Toba Olatoye, Simon Muhindi Savai, Myron
Pulier, Randa Salah Gomaa Mahmoud, Clara Amaka Nkpoikanke Akpan, Sayan Mitra, Julie Moonga: https://bio.jmirx.org/
2025/1/e75688
Authors' Response to Peer-Review Reports: https://bio.jmirx.org/2026/1/e88583

Abstract
Background: Spaceflight presents unique environmental stressors, such as microgravity and radiation, that significantly affect
biological systems at the molecular, cellular, and organismal levels. Astronauts face an increased risk of developing cancer
due to exposure to ionizing radiation and other spaceflight-related factors. Age plays a crucial role in the body’s response
to the cellular stresses that lead to cancer, with younger organisms generally exhibiting more efficient response mechanisms
than older ones. The vast majority of research investigating breast cancer risk from spaceflight uses cell lines exposed to
simulated radiation and microgravity, but cell lines cannot capture the combinatorial response expressed across tissues, organs,
and systems to real radiation and microgravity in space.
Objective: The primary objective of this in silico observational study is to characterize the molecular response to spaceflight
of in vivo murine mammary tissue. We use an ensemble of linear binary classifiers to identify the molecular biomarkers
enriched in this response using mice flown on the International Space Station. The secondary objective is to determine if age
plays a role in this response.
Methods: The National Aeronautics and Space Administration (NASA) Open Science Data Repository has curated transcrip-
tomic data obtained from 10 BALB/cAnNTac female mice flown on the International Space Station and 33 control mice
kept on earth (OSD-511). In this observational study focused on two age groups (old/young), we used an ensemble of 4
machine learning binary classifiers with linear decision boundaries (logistic regression, support vector machine, stochastic
gradient descent, and single-layer perceptron) to analyze gene expression profiles to predict age (old vs young) and condition
(spaceflight vs ground control). Using the genes our ensemble identified as most predictive, we performed pathway enrichment
analysis to investigate the molecular pathways involved in spaceflight-related health risks, particularly in the context of breast
cancer.
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Results: The pathway enrichment analyses revealed age-differentiated responses to spaceflight (false discovery rate–adjusted
q values<.05). Among the 10 mice flown in space, younger mice exhibited significantly enriched pathways related to
lipid metabolism and inflammatory stress signaling. All space-flown mice demonstrated evidence of adaptation in retinoid
metabolism and peroxisome proliferator-activated receptor signaling in response to microgravity and radiation relative to their
33 ground control counterparts.
Conclusions: Spaceflight-induced breast cancer risk manifests through distinct age-specific mechanisms: younger individuals
face risk through maladaptive metabolic hyperactivity and oxidative cycling, while older individuals are vulnerable due to
impaired stress responses and accumulated metabolic dysfunction. Both age groups ultimately face elevated carcinogenic
potential through different but converging pathways. These findings highlight the critical role of age in modulating the
response to spaceflight-induced stress and suggest that these molecular pathways may contribute to differential outcomes in
tissue homeostasis, metabolic disorders, and breast cancer susceptibility.
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Introduction
Spaceflight exposes living organisms to a unique set
of environmental challenges, including microgravity [1],
radiation [2], and altered gas composition [3], which can
significantly impact biological systems at the molecular,
cellular, and organismal levels. Several systems have been
shown to be impacted in both male and female organ-
isms, including the cardiovascular [4], musculoskeletal [5],
immune [6], neurologic [7], hepatic [8], and ophthalmologic
[9] systems, to name a few. Although there is currently
no evidence of increased gynecological cancer incidence
among female astronauts [10], earth-based mouse studies
using ionizing radiation, including simulated galactic cosmic
radiation, suggest that they may face an increased risk of
breast cancer when exposed to space radiation [11]. Expo-
sure to ionizing radiation is well established as a risk factor
for breast cancer [12], and both microgravity and simula-
ted microgravity have been shown to enhance the tumori-
genic potential of breast cancer cells grown in vitro [13-
15]. Furthermore, spaceflight disrupts circadian rhythms, and
consequent lower levels of melatonin reduce its efficacy in
inhibiting cancer cells [16,17]. Mammary cellular response to
spaceflight has been shown to differ with age, as younger
organisms typically exhibit more efficient cellular repair
and adaptive mechanisms than their older counterparts [18].
Adolescent murine mammary glands exposed to ionizing
radiation show increased activation of mammary stem
cell and Notch signaling pathways, heightened mammary
repopulating activity, and an increased propensity to develop
estrogen receptor–negative tumors [19]. A history of ionizing
radiation to the chest is a risk factor for breast cancer.
The Childhood Cancer Survivor Study indicates that breast
cancer risk is highest in young women treated for Hodgkin
lymphoma, but it is also increased in those who received
moderate-dose chest radiation for other pediatric or young
adult cancers [20]. In summary, current research suggests that
female astronauts are at a higher risk of developing breast
cancer than their terrestrial counterparts, with age being a
contributing factor to this increased vulnerability.

The vast majority of research into the risk of breast
cancer due to spaceflight has been conducted using simulated

radiation and microgravity on either female mice or human
breast cell lines. Monti et al [21] found that normal
and cancerous breast cell response to microgravity varies
drastically, depending on whether the cells are adhered
or attached in the organoid model. Kannan et al [22]
exposed breast cancer cells to simulated microgravity and
compared cells exposed to 10 g and 1 g forces and the
respective response in proliferation, cell-cell interaction,
and formation of 3D structures, migration, and invasive-
ness. Although in vitro studies are valuable for mechanistic
insights, high-throughput screening, and controlled manipu-
lations, they cannot fully replicate the physiological con-
text of an intact organism. Although simulated microgravity
and radiation experimentation on cell lines are much less
expensive and resource-intensive approaches than control-
led spaceflight experiments, they fail to reproduce the
full combinatorial spectrum of the spaceflight environment.
Sarkar and Pampaloni [23], in their study of bone marrow
remodeling and immune dysfunction in space, note that it
remains uncertain how well various microgravity simulation
methods replicate the conditions of actual microgravity. They
also emphasize that differences in equipment may influence
experimental reproducibility, as past studies have frequently
produced conflicting results [23].

Bioinformatic approaches have been used to study the
effect of spaceflight on health. Many methods in bioinformat-
ics, such as genome-wide association studies and differen-
tial gene expression analysis, leverage statistical hypothesis
testing as a mechanism to discover new insights. Integrating
machine learning (ML) into established bioinformatics and
computational biology frameworks has significantly advanced
the development of predictive models and analytical tools
across molecular evolution, proteomics, systems biology,
and disease genomics [24]. ML and artificial intelligence
(AI) models are becoming more complex, trained on larger
datasets, and run on faster hardware. These trends are
accelerating adoption across domains, including bioinformat-
ics. Casaletto et al [25] leveraged an ensemble of ML
algorithms to identify genes most predictive of lipid density
in murine liver tissue. Building accurate models, particularly
with high-dimensional predictors such as gene expression,
typically benefits from large sample sizes [24]. To mitigate
this, researchers use some form of feature selection—a broad
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collection of techniques that reduces the dimensionality of the
feature space [26,27]. Filtering methods such as coefficient of
variation and feature correlation to a target are examples of
feature selection techniques. Traditional ML algorithms such
as single-layer perceptrons and logistic regression may be
considered weak learners in the context of high-dimensional
datasets—but, leveraged together in an ensemble, such weak
learners can achieve excellent performance [28].

The use of ML to study spaceflight-induced changes in
mammary gene expression can offer valuable insights into
the mechanisms of breast cancer development. In this study,
we examine the gene expression profiles from a controlled in
vivo experiment in which young and old mice were exposed
to spaceflight. The mammary glands were dissected and the
tissue used for transcriptomic analysis. We are repurposing
the data from this study to explore the use of traditional ML
methods including random forest, logistic regression, support
vector machine, and the single-layer perceptron to determine
how murine mammary tissue responds to spaceflight and
whether age is a factor. Using the coefficients of simple
models such as these to determine feature importance makes
this approach very transparent and easy to understand, and
combining models into an ensemble makes it a powerful and
robust approach.

Methods
In this section, we discuss the data on which this research is
based and how we preprocessed it for our ML ensemble. We
describe the ensemble of ML algorithms we leveraged, how
we derived feature importance from the trained models, and
how we combined and filtered the results of the models to
form a final set of gene results from our experiments.
Ethical Considerations
We used OSD-511 as the source of data for our observational
study. All National Aeronautics and Space Administration

(NASA) rodent research missions, including Rodent Research
Reference Mission 1 (RRRM-1) from whence our data
are derived, are required by US federal law to follow
strict humane care and use of laboratory animals under the
provisions of the Health Research Extension Act of 1985
[29]. As an observational study, our research was conduc-
ted on data from an already-published experiment. The
authors believe the repurposing of existing datasets not only
maximizes the cost-effectiveness of those studies, it also
eliminates the need to further expose animals to the condi-
tions of spaceflight and ultimately sacrifice animals for novel
research.
Data
In the RRRM-1, a total of 43 female BALB/cAnNTac mice
were included in the study, consisting of 21 younger mice
(aged 9‐12 weeks, YNG) and 22 older mice (aged 32 weeks,
OLD). Among the younger mice, 5 were flown in space,
8 were kept in the Animal Enclosure Module (AEM), and
8 were housed in regular vivarium cages (VIV). Vivarium
controls are included in spaceflight studies to distinguish the
effect of the cage used in spaceflight (ie, AEM) from the
ambient effects of spaceflight (eg, radiation, microgravity).
In this research, we do not explore that distinction, so we
combined the VIV and AEM control groups into a single
ground control group called “GC.” For the older mice (OLD),
5 were flown in space, 7 were housed in flight hardware, and
10 in vivarium cages. Note that there was no basal group
included in the design of their experiment. After 40 days in
space, the mice were safely returned to Earth, given 2 days
to recover (Live Animal Return), and then euthanized. Mice
flown in space and kept in standard cages are denoted FLT.
Table 1 summarizes the distribution of mice in the experi-
ment.

Table 1. Distribution of mice in different experimental groups, including flight habitat (AEM) and vivarium (VIV), which together constitute the
overall ground control (GC=AEM+VIV), and spaceflight (FLT) groups for both the old (OLD) and young (YNG) cohorts. Marginal totals are
provided in the last column of the table.

OLD (32 weeks) YNG (9-12 weeks) Total
AEM (Animal Enclosure Module) 7 8 15
VIV (vivarium) 10 8 18
GC (ground control) 17 16 33
FLT (spaceflight) 5 5 10

The dataset contains ribo-depleted total RNA sequencing
(RNA-seq) data from mammary glands. The sequences
for each mouse were aligned once using Mus musculus
Spliced Transcripts Alignment to a Reference (STAR; version
2.7.10a) and once with RNA-Seq by Expectation-Maximi-
zation (RSEM version 1.3.1) to the Ensembl release 107,
genome version GRCm39. These data are available in the
Open Science Data Repository [30] as dataset OSD-511 [31].
Both datasets (RSEM, STAR) are published with OSD-511.

The principal component analysis (PCA) plots of the
data are shown in Figure 1. PCA projections that display
approximately linearly separable classes suggest that binary
classifiers with linear decision boundaries, such as those in
our ensemble, may achieve strong classification performance.
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Figure 1. PCA plots for each of the experiments (augmented datasets with RSEM, STAR). Figures 1A-C are PCA plots of the ground control
mice, spaceflight mice, and all mice, respectively, and are colorized by age. Figures 1D-F are PCA plots of the young mice, old mice, and all mice,
respectively, and are colorized by condition. PC: principal component; PCA: principal component analysis; RSEM: RNA-Seq by Expectation-Maxi-
mization; STAR: Spliced Transcripts Alignment to a Reference.

Based on the 3D PCA plot in Figure 1A, age among ground
control mice did not seem to be predictable from gene
expression with a linear decision boundary. This supportd
the use of the control group and provided a neutral base-
line for later comparisons. In Figure 1B, gene expression
differed between young and old mice in response to space-
flight. Figures 1D and E showed a clear distinction between
ground control and spaceflight among young and old mice,
respectively. This pattern suggested an age-related response
to spaceflight and motivated us to investigate further. Figure
1C did not clearly distinguish young from old mice, but
Figure 1F showed a clear separation between the unmarginal-
ized age groups. This suggests that the impact of age on gene
expression is not as significant as the impact of spaceflight.

ML model performance generally improves with more data
points. Additionally, training and testing must be performed

on a sufficient number of data points to accurately quantify
model performance. Data augmentation is a collection of
methods used to increase the size of a dataset for training and
testing. In our research, we combined the RSEM and STAR
datasets by creating 2 data points per biological sample: one
for the RSEM quantification and one for the STAR quantifi-
cation. This increased the size of our dataset by a factor of 2,
with the caveat that the augmented samples are not independ-
ent (see points in Figure 1). Because ML model performance
improves with fewer dimensions, we performed the filtering
methods described in Table 2 to reduce the dimensionality of
the dataset. We removed genes that have nonnumeric values
or not-a-number values, genes that do not code for proteins,
genes with counts below 30 in 80% of the samples, genes
with a coefficient of variation lower than 0.4, and nondiffer-
entially expressed genes at an α level of 0.1.

Table 2. Data-filtering methods applied to this dataset include removing genes with not-a-number values, noncoding genes, and genes that are not
correlated to the binary targets (old vs young or ground control vs spaceflight). Columns include the total count of genes before the filter was applied,
the total number of genes removed by the filter, and the count of genes remaining after the filter was applied. These filters were executed in order
from top to bottom, leaving a total of 750 genes for training our models.
Filtering method Count before filter Number removed by filter Count after filter
Remove genes with not-a-number values 56,840 0 56,840
Remove non–protein-coding genes 56,840 35,159 21,681
Remove noncorrelated genes 21,681 20,931 750

After reducing the dimensionality of the data, we applied
three transformations. First, we transformed the data into
transcripts per million to account for sequencing depth
and gene length, thus making the gene expression values

comparable within a sample. Second, we applied a log
transformation to stabilize the variance inherent in tran-
scriptomic count data. Third, since coefficient-based ML
algorithms require all the feature values to be on the same
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scale, we used the StandardScaler method from scikit-learn to
convert all feature values to z-scores.

Figure 2 shows the graphical summary of the methods
we used in our in silico experiments to create sets of genes
that are predictive of their respective targets. We introduce

the notation “GROUP:target” to denote the experiment where
GROUP represents the subsets ground control (GC) and
spaceflight (FLT) or the subsets young mice (YNG) and old
mice (OLD), and the target represents the binary class age or
condition (cnd) that the ML model is trained to predict.

Figure 2. Graphical summary of the methods used in this research. (A) The OSD-511 dataset contains RNA-seq data for mouse mammary tissue.
(B) The data were filtered to reduce dimensionality, normalized, log-transformed, and standardized. (C) Data were divided into GC and FLT groups
to predict age and divided into YNG and OLD groups to predict condition. (D) Each subset of data was used to build 4 models in the ensemble. (E)
Each model generated two sets of genes most predictive of the target. (F) The two sets from each model were unioned into a single set per model. (G)
The four sets from each model were majority-intersected to yield the intermediate set of genes per experiment. cnd: condition; FLT: spaceflight; GC:
ground control; OLD: old; YNG: young.

Figure 2 shows all the steps in the pipeline to produce the
intermediate result set of genes, which were further processed
as described in Figure 3.
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Figure 3. Venn diagrams depicting set difference operations to identify genes uniquely predictive of age (A and B) and condition (C and D) for a
given subset of mice. In Figure 3A, we remove ALL:age genes and FLT:age genes that intersect with GC:age to obtain those genes that uniquely
predict age for ground control mice. These genes are represented by the light blue part of the Venn diagram. Similarly, we remove ALL:age
genes and GC:age genes that intersect with FLT:age genes to obtain those genes that uniquely predict age for space-flown mice. These genes are
represented by the light orange part of that Venn diagram. In Figures 3C and 3D, we use the same logic to obtain those genes that uniquely predict the
condition of old mice in the yellow, textured part of the Venn diagram and those genes that uniquely predict the condition for young mice in the pink
part of the Venn diagram. These set operations yielded the final gene results we discuss in the next section. cnd: condition; FLT: spaceflight; GC:
ground control; OLD: old; YNG: young.

Algorithms
We leveraged 4 supervised ML algorithms on the gene
expression data to predict labels associated with each sample.
These models were trained and tested to classify binary labels
(spaceflight vs ground control and old vs young) and include
stochastic gradient descent (SGD), logistic regression (LR),
single-layer perceptron (SLP), and support vector machine
(SVM). These models were specifically selected to capture
linear decision boundary classification patterns.

The SGD classifier from scikit-learn trains a linear
classifier using stochastic gradient descent to update the
coefficients of the input features. SGD iteratively updates
the coefficients based on the gradient of the loss func-
tion, using one training sample at a time to compute each
gradient step, rather than the whole dataset. We used the
scikit-learn implementation of SGDClassifier with all default
hyperparameters. LR, despite its name, is a binary classifi-
cation algorithm that provides a probability for the binary
target prediction based on a set of discrete or continuous
features [32]. Because it does use regression, there are model
coefficients associated with the features that may be used
for feature importance. We used the scikit-learn implemen-
tation of LR as a binary classifier with all default values
for the hyperparameters. The SLP was developed in the
1950s by Frank Rosenblatt and is the most basic form of
neural network [33]. The input features are weighted in a
linear combination that can either be sent through a sigmoi-
dal activation function for binary classification or through a
linear activation function for regression. Feature importance
is conveniently derived directly from the feature weights,
which makes the SLP an easy-to-interpret ML algorithm.
We used the scikit-learn implementation of SLP as a binary

classifier with all default hyperparameter values. The SVM
was created by Hava Siegelmann and Vladimir Vapnik as
a margin-based classifier using so-called support vectors to
separate classes in the feature space [34]. Feature importance
is derived directly from the coefficients of the support vectors
of linear kernels. We used the scikit-learn implementation of
the linear SVM with all default hyperparameter values.

All four models were trained using a train/test split
of 80/20 with GroupShuffleSplit() from sklearn.model_selec-
tion. This method allows users to specify which samples
must be grouped together after the split, permitting us to
keep the RSEM and STAR replicates in the same train and
test groups and thereby prevent target leakage. The models
were validated using the scikit-learn implementation of k-fold
cross validation, and we used k=5 as the number of folds
because we had such few samples. Because of the small
number of samples, we repeated the experiments several
times using different seeds for the random number generators
used throughout the pipeline. We deployed the four classifi-
cation algorithms as binary classifiers in two experiments:
predicting age (OLD vs YNG) and predicting condition
(FLT vs GC) using gene expression data as predictors.
After training each model, we identified the features most
predictive of the classes using the two methods described in
the next section.
Per-Model Feature Importance
In our method, we combined multiple ML algorithms into an
ensemble classifier to predict either experimental condition
(ground control vs spaceflight) or age (young vs old). We
quantified feature importance by coefficient magnitude in two
parts of the pipeline: cross-validation and a standard train-test
split. In the cross-validation setting, the data were partitioned
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into 5 folds, and models were then trained on a single fold
and evaluated on the other 4 folds. This procedure yielded
5 fitted estimators. For each estimator, scikit-learn provided
coefficients from which we derived feature importances. We
then averaged the importances for each feature across the
folds, ranked the features according to this mean value, and
kept the top 50 highest-coefficient features. In the train-test
approach, we fitted the model to the training set, ranked
the coefficients by magnitude and selected the top 50 as
the most predictive features. We combined these two gene
sets together into a single set of genes using the union set
operation and then removed genes overlapping with other
experiments as described in the next section.
Per-Experiment Ensemble Voting
Ensemble predictions are commonly aggregated by majority
voting [35]. For each experiment, we first formed, for each
algorithm, the union of the two feature importance lists. We
then applied majority voting across the 4 algorithm-specific
unions, retaining genes that were present in at least 3 of them.
We obtained the final label predictive set with a difference
operation, as described in the next section.
Final Gene Set Formulation
To determine the genes that are most predictive of a target
(age or condition) for a given subset of mice (eg, YNG
vs OLD or FLT vs GC), we removed those genes that are
generally predictive of the target, regardless of their subset.
In this way, we identified the marginal set of genes that
are uniquely predictive of the target within that subset. For
example, in the experiment in which we predicted age, we ran
3 experiments: one in which we used only ground control
samples to predict age (GC:age), one in which we used

only spaceflight samples to predict age (FLT:age), and one
in which we used all the samples combined to predict age
(ALL:age). Each of these 3 experiments produced a set of
gene results as previously described. In Figure 3, we showed
how we formulated our final set of gene results for analysis.
We adopted the notation {X} \ {Y} to represent the difference
in set membership between sets X and set Y.

Results
In this section, we discuss the final results of our 4 experi-
ments: predicting age for ground control samples, predict-
ing age for spaceflight samples, predicting condition for old
samples, and predicting condition for young samples.
Model Performance
Since our models do not classify outcomes as “positive” and
“negative” with different associated costs, metrics such as the
false positive rate and false negative rate offer limited insight.
Given the imbalanced class distribution between ground
control and spaceflight groups, accuracy is an inadequate
performance measure. To evaluate model performance using
a single comprehensive metric, we selected the F1-score,
which represents the harmonic mean of precision and recall,
as our primary performance indicator. Table 3 displays the
F1-score (averaged over 5 different random number generator
seeds) of each of the 4 classification models in the ensemble
for the experiments predicting age in FLT, GC, and ALL
groups. The train and test scores were obtained using the
80/20 train/test split data sets, and the cross-validate score is
the mean score across the 5 folds.

Table 3. Average F1-score for training, testing, and cross-validation of each of the classification models (stochastic gradient descent, support vector
machine, logistic regression, and single-layer perceptron) for the experiments predicting age (FLTa:age, GCb:age) for those mice in the FLT and GC
groups.
Model and experiment Train Test Cross-validate
Stochastic gradient descent

FLT:age 1.0 0.96 0.89
GC:age 1.0 0.99 0.98

Support vector machine
FLT:age 1.0 1.0 0.91
GC:age 1.0 1.0 0.99

Logistic regression
FLT:age 1.0 1.0 1.0
GC:age 1.0 1.0 1.0

Single-layer perceptron
FLT:age 1.0 1.0 1.0
GC:age 1.0 0.99 1.0

aFLT: spaceflight.
bGC: ground control.

Table 4 displays the performance of each of the 4 classifica-
tion models in the ensemble for the experiments predicting
the condition for YNG and OLD groups.
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Table 4. Average F1-score for training, testing, and cross-validation of each of the classification models for the experiments predicting condition
(OLDa:cndb, YNGc:cnd) for those mice in the OLD and YNG groups.
Model and experiment Train Test Cross-validate
Stochastic gradient descent

OLD:cnd 1.0 0.97 0.84
YNG:cnd 1.0 0.99 0.91

Support vector machine
OLD:cnd 1.0 1.0 0.90
YNG:cnd 1.0 1.0 0.92

Logistic regression
OLD:cnd 1.0 1.0 1.0
YNG:cnd 1.0 1.0 1.0

Single-layer perceptron
OLD:cnd 1.0 0.96 0.94
YNG:cnd 1.0 1.0 1.0

aOLD: old.
bcnd: condition.
cYNG: young.

As shown in Tables 3 and 4, all the train scores had a perfect
F1-score, and all but 3 of the test scores in each table were
also perfect. The cross-validate score is useful in determining
to what extent there is bias in the model due to how the train
and test data were split, or how much the model is otherwise
overfit. The experiments predicting condition for young mice
outperformed the same experiments for old mice. The SLP
and LR models outperformed SGD and SVM in all experi-
ments. In Table 2, SGD scored the lowest F1-scores in both
experiments (OLD:cnd, YNG:cnd) predicting the condition.
Because we used the majority consensus for our feature

voting algorithm, we acknowledge SGD as the weakest
learner for those experiments and accept the results from the
rest (majority) of the ensemble. After training each model,
we identified those genes most predictive of their respective
target. We present these results in the next section.
Most Predictive Genes
In this section, we discuss the genes most predictive of the
targets for each experiment. Textbox 1 lists the genes most
predictive of the label for each of the experiments.

Textbox 1. List of genes most predictive of the target (age, condition [cnd]) for the given subset (GC [ground control], FLT
[spaceflight], YNG [young], OLD [old]).

GC:age
• Aip, Aldh2, Ceacam10, Ciao2b, Clec4d, Csn1s2a, Ctsz, Dmbt1, Gng2, Gstm1, Klk4, Lrrc30, Mrgprb1, Myh8, Nudt9,

Or13a27, Pam, Park7, Prom1, Psmc4, Psmd2, Slc5a5, Smyd2, Syngr2, Tle5, Vmn1r38, Wap, Wdr18, Yif1b, Znhit2
FLT:age

• Acsm1, Acss2, Adamdec1, Adcy10, Ahsg, Aldoa, Aldob, Ap2b1, Apoa1, Apoa2, Apoa4, Atp1a3, Atp6ap1, Bmp2k,
Ces1g, Chrna5, Cps1, Cyp2c29, Cyp2c50, Elovl3, Epyc, Fabp1, Fga, Fgb, Fmo3, Gbp11, Gc, Gnl1, Hadha, Hspa5,
Immt, Lmod2, Lrrc59, Maob, Mat1a, Mogat2, Mrpl30, Mtch1, Ncan, Psmb7, Ptk7, Rad23b, Ramp2, Rdh11, Scgb1c1,
Serpinf2, Slc10a1, Slc25a3, Slc25a39, Slc27a5, Slc38a3, Ssx2ip, Stfa3, Sult3a1, Tat, Tdrd9, Tmem259, Ugt2b34, Uox,
Urod, Zfp747

YNG:cnd
• Aar2, Abcc6, Acot11, Apcdd1, Aspg, Cdcp3, Elovl3, Ergic1, Gale, H1f0, Hspb8, Kcng4, Ltc4s, Maff, Map3k4,

Mogat2, Mrpl47, Mrps18a, Ncan, Odad4, Pnpla5, Postn, Ppcs, Prune2, Rdh11, Scd2, Sfxn5, Smtnl2, Tekt1,
Tmprss11a, Vstm2b

OLD:cnd
• 6430571L13Rik, Acad10, Actl6b, Agtr1a, Ambp, B3gnt7, Begain, Calca, Ceacam20, Cuta, Dgat2, Fgf21, Glud1,

Igfbp4, Igsf21, Jmjd8, Krt12, Krtap6-7, Map6d1, Mrpl42, Or2y1e, Or51r1, Or56b35, Rgs16, S100a9, Tcap, Trim9,
Ttr, Vmn1r32

The genes listed in constitute the final results of our ML
ensemble that resulted from the set operations portrayed in
Figure 3.

In Figure 4, we show the distribution of gene expression
for the most predictive genes of each experiment across the
distribution of all the genes that were used to train the models.
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Figure 4. Scatter plots of variance versus mean for the experiments predicting age (top row) and predicting condition (bottom row). The blue points
are the background genes (ie, all 750 genes that were used to train the model), and the red points are most predictive of their respective target. cnd:
condition; FLT: spaceflight; GC: ground control; OLD: old; YNG: young.

As shown in Figure 4, the distribution of the genes identi-
fied by our ML ensemble across the spectrum of expression
is approximately uniform. From that, we can infer that the
ML algorithms do not portray any bias based on the magni-
tude (mean or variance) of the distributions of gene counts.
This indicates that the models and their ensemble are not
vulnerable to the heteroskedastic nature of gene expression
count data. Note that the distribution of genes predicting
age is different than the distribution of genes predicting
condition because we used the 750 genes most correlated
to the respective target. We next show which biological

pathways are enriched by the GC:age, FLT: age, YNG:cnd,
and OLD:cnd gene sets.
Pathway Enrichment Analysis
We submitted our lists of most predictive genes to ShinyGO
(version 0.81)—an online pathway enrichment analysis tool
[36]—using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database [37], a false discovery rate cutoff
of .05, and minimum gene set intersection size of 2, and
displayed the top 5 most enriched pathways. The results of
these analyses are captured in Table 5.

Table 5. Pathway enrichment analyses for the machine learning experiments. All corresponding false discovery rate q values were statistically
significant to an α level of less than .05.

Experiment and pathways Genes
False discovery rate q
value

GCa:age
  No enrichment —b —
FLTc:age
  Metabolic pathways Ugt2b34, Cyp2c50, Maob

Aldoa, Acsm1, Mat1a
Elovl3, Cyp2c29, Fmo3

1.456e-07
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Experiment and pathways Genes
False discovery rate q
value

Rdh11, Uox, Urod, Cps1
Aldob, Mogat2, Tat
Slc27a5, Adcy10, Atp6ap1
Acss2, Hadha

  Fat digestion and absorption Apoa1, Apoa4, Fabp1, Mogat2 0.00037
  Biosynthesis of amino acids Aldoa, Mat1a, Cps1, Aldob 0.00264
  Peroxisome proliferator-activated receptor signaling

pathway
Apoa1, Apoa2, Fabp1, Slc27a5 0.00331

  Retinol metabolism Ugt2b34, Cyp2c50
Cyp2c29, Rdh11

0.00347

YNGd:cnde

  Biosynthesis of unsaturated fatty acids Elovl3, Scd2 0.02312
  Fatty acid metabolism Elovl3, Scd2 0.03802
  Metabolic pathways Ppcs, Elovl3, Ltc4s, Rdh11, Scd2, Mogat2,

Gale
Rdh11, Scd2, Mogat2
Gale

0.00779

OLDf:cnd
  No enrichment — —

aGC: ground control.
bNot applicable.
cFLT: spaceflight.
dYNG: young.
ecnd: condition.
fOLD: old.

The most important genes predicting the age in the ground
control group (GC:age) and those predicting the condition
in the old group (OLD:cnd) did not significantly enrich
any of the KEGG pathways. The genes most predictive
of age in the spaceflight group (FLT:age) enriched sev-
eral KEGG pathways, the top 5 of which are shown
in . The metabolic pathways enrichment represents a very
broad class of biological functions including lipid metabo-
lism, energy metabolism, and xenobiotic metabolism. The
peroxisome proliferator-activated receptor (PPAR) signaling
pathway represents fatty acid oxidation, lipoprotein metabo-
lism, and an anti-inflammatory response. Because retinoids
are antioxidants, the retinol metabolism pathway is likely
responding to oxidative stress. The genes most predictive
of condition for the young mice (YNG:cnd) also primarily
enriched membrane lipid metabolism, inflammatory stress
signaling, and overall metabolic capacity. All these pathways
being enriched suggests that spaceflight amplifies age-related
differences in metabolic flexibility, especially in pathways
that manage lipid metabolism in response to inflammation
and oxidative stress. In the Discussion section, we will
explore this theme further in the context of breast cancer.

Discussion
Principal Findings
In this study, we used a novel approach combining results
from an ensemble of 4 linear classifier ML models to
predict condition (spaceflight or ground control) and age

(young or old) using features derived from gene expression
data. The results reveal distinct gene expression signatures
that differentiate both age and exposure to spaceflight in
mice, revealing some of the molecular mechanisms that
may underpin the effects of spaceflight and aging and their
potential impact on breast cancer. In this section, we discuss
the principal findings of our research in the context of breast
cancer, compare our approach to other ML approaches on
transcriptomic data, describe strengths and limitations to our
methods, and conclude with considerations toward future
directions of this research.

Our research finds that the younger mouse cohort mounted
a differential response to spaceflight with respect to their
older counterparts. One reason for this may be that younger
cells have higher plasticity, and therefore their tissue
has greater capacity to respond to the environment [38].
Older cells may have blunted responses because they have
exhausted their capacity to respond due to accumulated stress
[39]. Another reason may be signal saturation: older tissue
has chronic low-grade inflammation and is already express-
ing a stress response to oxidative damage at a baseline
[40]. In the context of breast cancer risk due to spaceflight,
our research paradoxically suggests that the younger cohort
may have an increased risk due to the simultaneous modu-
lation of PPAR signaling and fatty acid biosynthesis. The
younger cohort gene expression enriched unsaturated fatty
acid metabolism pathways in the Elovl3 and Scd2 genes.
Galactic cosmic radiation generates reactive oxygen species,
which attack unsaturated fatty acids in membranes, leading to
lipid peroxidation [41]. Damaged lipids, if left unchecked,
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can cause mitochondrial and nuclear membrane damage,
leaving cells struggling to maintain basic homeostasis [42].
The genes enriching the PPAR signaling pathway (Apoa1,
Apoa2, Fabp1, and Slc27a5) are all PPAR-α genes, which
promote the breakdown of damaged fatty acids so they may
be used as an energy source [43]. This can lead to a vicious
cycle whereby fatty acids are synthesized and then oxidized,
inducing reactive oxygen species production, which causes
more lipid peroxidation [44]. The subsequent proliferation of
peroxisomes would put these younger mammary cells under
chronic oxidative stress and increase carcinogenic potential
[45].

Our research suggests that older mice may be at increased
risk of breast cancer for different reasons. In the experi-
ment predicting condition (spaceflight vs ground control)
for all mice, their most predictive genes enriched path-
ways in retinol metabolism and PPAR signaling. The genes
enriching the retinol metabolic pathway include Ugt2b34,
Cyp2c50, Cyp2c29, and Rdh11. The Rdh11 enzyme, or retinol
dehydrogenase 11, synthesizes retinoids, which regulate
cell proliferation, promote cell differentiation, and induce
apoptosis—all of which help prevent and suppress mammary
gland tumor formation [46]. However, the Cyp2c50 and
Cyp2c29 genes are degradation enzymes in this pathway and
lead to retinoid depletion. Moreover, the Ugt2b34 gene is an
excretion enzyme that eliminates active retinoids. The overall
metabolic impact on this pathway may lead to the degrada-
tion of retinoids, which would greatly increase the risk of
developing breast cancer [47]. The simultaneous disruption of
PPAR signaling and retinoid metabolism in mammary tissue
following spaceflight represents a synergistic increase in
breast cancer risk [48-50]. This two-hit disruption is normally
more severe in older animals due to depleted antioxidant
reserves and reduced metabolic flexibility [51], suggesting
that older individuals may face substantially elevated breast
cancer risk from spaceflight exposure.
Comparison to Prior Work
Zhang et al [52] built an ML model that leverages
a transformer architecture, incorporating phenotype predic-
tion, biomarker discovery, and identification of implicated
biological processes into a single model using transcrip-
tomic data as features. Our research provides similar types
of analyses, but we use binary classification models for
phenotype prediction and two forms of feature importance to
identify biomarkers; we also leverage an existing, well-used
framework (ie, KEGG pathways) for identifying biological
processes. Smith et al [53] use a similar set of data pro-
cessing steps in their pipeline (converting gene counts to
transcripts per million, applying log transformations) in an
ML ensemble, but they use regression rather than classifi-
cation to predict phenotypes. Arnold et al [18] examined
the same dataset (OSD-511) as the one explored in this
research but used differential gene expression analysis to
identify the biomarker genes that distinguish young from
old and spaceflight from ground control mice. Differential
gene expression analysis is a commonly used technique for
high-dimensional data but suffers from multiple test burden

and an inability to distinguish between true and spurious
correlations.
Strengths and Limitations
The first strength and motivating factor for studying this data
is to maximize the utility of underpublished in vivo research
in controlled spaceflight experiments. Murine experimenta-
tion in space is very costly, time-consuming, and requires
sacrificing animals. As an observational study, we obtained
real-world insights without further cost and sacrifice. The
second strength of our approach is model interpretability.
Particularly in the context of predicting biomedical outcomes,
using whitebox, linear decision-boundary models such as
SGD classifier, SVM, LR, and SLP enables transparency,
engenders trust, and provides more straightforward biologi-
cal insight into a high-dimensional feature space such as
gene expression data. The third strength of our approach
is the use of simple set operations (union, intersection, and
difference) to improve interpretability. The fourth strength of
our approach is the use of the KEGG database as a trusted,
well-known pathway enrichment analysis database to further
promote simplicity and trust.

The first limitation of our approach is that we excluded
many ML methods, such as multilayer perceptrons and other
deep learning architectures, that may outperform the ones we
used at the expense of simplicity and interpretability. The
second limitation of our study is the sensitivity of the results
to our preprocessing. For example, removing genes that have
low counts and are not correlated to the target reduces the
signal-to-noise ratio in a high-dimensional feature space.
However, because some biological processes are sensitive to
slight variations in gene expression, we may have removed
some of the genes that contribute to the phenotypes that our
models predicted. Filtering out genes that do not code for
proteins allows our pathway enrichment analysis to focus
on well-understood genes, though again, we understand that
noncoding genes may also have contributed to the pheno-
types. The third limitation of our study is the paucity of data.
We would feel more confident in our results if we could
explore a larger and more varied collection of samples. The
fourth limitation of our study is the lack of an in vivo or in
vitro validation of our findings. Although the gold standard
in biomarker identification is the randomized controlled trial,
our observational research serves to inform such a study and
can restrict the search space of an otherwise very resource-
intensive endeavor. The last limitation of our research is that
it relies on a single point-in-time snapshot of the mammary
transcriptome via bulk RNA-seq. A better approach would be
a longitudinal investigation that elucidates time as a contribu-
ting factor to spaceflight response.
Future Directions
Our research has identified putative genes and pathways
implicated in age-differentiated pathological responses to
spaceflight in mammary tissue. Future work may include
single-cell RNA sequencing and proteomic sequencing to
give higher resolution and downstream validation, respec-
tively. Combining multiple datasets from similarly controlled
experiments to increase the number of biological replicates
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would, in turn, increase confidence in our ML results. These
findings offer valuable information for further studies into the
impact of spaceflight on female astronaut health, reiterates

well-established roles between spaceflight and breast cancer
risk, and provides a straightforward ML approach to leverage
a vast array of unexplored data.
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