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Abstract

Background: Lettuce (Lactuca sativa L.) is an economically important leafy vegetable that is cultivated worldwide. Advances
in plant biotechnology have enabled the development of transgenic and transplastomic lettuce lines with specific agronomic traits
that produce pharmaceutical proteins and biological compounds. Plant regeneration efficiency is a critical and highly
cultivar-dependent step in plant genetic transformation. No morphological markers have been identified that predict the regeneration
ability or cytokinin requirement of lettuce cultivars, hindering the establishment of efficient regeneration systems.

Objective: This study aimed to optimize the direct shoot regeneration efficiency of leaf lettuce cultivars and identify a
morphological trait that predicts the optimal cytokinin concentration for each cultivar.

Methods: The direct shoot regeneration of two cultivars (Chima-sanchi and Chirimen-chisya) was tested on media containing
various concentrations of the cytokinin 6-benzylaminopurine (BAP). Four additional cultivars with different seed coat colors
were analyzed to determine the relationship between seed coat color and the optimal BAP concentration. Statistical significance
was evaluated using the Student t test, with significance set at P<.01.

Results: The highest regeneration efficiencies in Chima-sanchi (80.5%, SE 3.0%; 103 of 128 explants) and Chirimen-chisya
(50%, SE 4.4%; 64 of 128 explants) were obtained with 0.05 and 0.5 mg/L BAP, respectively. Therefore, the optimal BAP
concentration differed significantly between the cultivars (P<.01). The seed coat color and the optimal BAP concentration required
for efficient direct shoot regeneration were strongly correlated among the six cultivars.

Conclusions: Seed coat color is a useful morphological marker for predicting the optimal BAP concentration required for
efficient direct shoot regeneration in leaf lettuce cultivars. These findings contribute to optimizing lettuce shoot regeneration
systems for specific cultivars.

(JMIRx Bio 2026;4:e70496)   doi:10.2196/70496
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Introduction

Lettuce (Lactuca sativa L.) is a major vegetable crop cultivated
worldwide that belongs to the Asteraceae family. The total

world production of lettuce and chicory has increased 1.3-fold
in the 20 years since 2005 according to the Food and Agriculture
Organization of the United Nations [1]. Asia produced 18.1
million tons of lettuce in 2023, which was 64.4% of global
production; Japan produced 0.6 million tons of lettuce, ranking
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seventh highest in the world [1]. Lettuce is a dietary source of
vitamins and minerals [2]. Thus, lettuce cultivars with increased
yield and resistance to biotic and abiotic stresses have been
developed using conventional breeding methods [3].

Transgenic and transplastomic lettuce lines with specific
agronomic traits that accumulate pharmaceutical proteins and
biocompounds have been developed using transformation
procedures mediated by particle bombardment and
Agrobacterium [3]. The major lettuce varieties worldwide
include leaf, crisphead, butterhead, and romaine lettuce [3].
Leaf lettuce varieties have wrinkled leaves with frilly edges and
no head; their fresh shoots are heavier than those of butterhead
varieties under light-emitting diode lighting [4]. Therefore, leaf
lettuce varieties are more suitable for indoor growth. Moreover,
leaf lettuce contains more β-carotene, a precursor to vitamin A,
and more lutein per dry weight than either crisphead or
butterhead lettuce [5].

Plant tissue cultures have been widely used in plant breeding
and industrial applications, such as for propagating virus-free
plants, producing valuable compounds, and producing
somaclonal variations [6]. The shoot regeneration efficiency of
most plant species is highly dependent on the explant sources,
the basal salt mixtures, sugars, and plant growth regulators [7].
Combining the cytokinin 6-benzylaminopurine (BAP) and the
auxin 1-naphthaleneacetic acid (NAA) effectively regenerates
lettuce shoots, but the optimal combination differs among
cultivars [8-10]. Optimizing plant tissue culture parameters is
labor-intensive and time-consuming because culturing plant
tissues is a slow process. The molecular mechanisms regulating
shoot regeneration in lettuce have been examined [11]. The
effects of auxins and cytokinins on lettuce regeneration have
been studied: the response is mostly cultivar-specific [8-10],
and no reliable morphological marker has been identified to
predict regeneration ability. For example, Bull and Michelmore
[11] molecularly characterized the genetic and regulatory
mechanisms underlying regenerative competence in lettuce, but
how visible traits relate to hormonal responsiveness was not
examined. Certain visible traits may reflect the regenerative
capacity, as demonstrated in Cymbidium [12]; however, these
morphological cues have not been explored in lettuce. We found
that seed coat color strongly correlates with the cytokinin
requirements for efficient shoot regeneration in leaf lettuce
cultivars. Seed coat color is a simple, nondestructive
morphological marker that can be used to accelerate the
optimization of regeneration systems for genetic transformation.
Therefore, this study aimed to evaluate whether seed coat color
can reliably predict the cytokinin concentration required for
efficient direct shoot regeneration across multiple leaf lettuce
cultivars.

Methods

Plant Materials and Growth Conditions
Six leaf lettuce cultivars were used in this study: Chima-sanchi
and Chirimen-chisya (purchased from Tohoku Seed), Red fire
and Green wave (purchased from Takii Seed), and Fringe green
and Shiki-beni (purchased from Sakata Seed). Chima-sanchi,
Red fire, and Shiki-beni are white seed cultivars;
Chirimen-chisya, Green wave, and Fringe green are brown seed
cultivars . The seeds were stored in a constant humidity chamber
(SD-302‐01, Toyo Living) at 25 °C and a relative humidity
of 0%‐1% until sowing. Seeds were surface-sterilized via
immersion in 70% ethanol for 1 minute. The seeds were treated
with 20% commercial bleach (Kao) containing 6% sodium
hypochlorite, resulting in a final NaOCl concentration of 1.2%,
for 15 minutes. The seeds were then rinsed 3 times with sterile
distilled water. The sterilized seeds were placed on a
germination medium containing half-strength Murashige and
Skoog medium (2.3 g/L, Wako Pure Chemical Industries) [13]
supplemented with 10 g/L sucrose and 2.5 g/L Phytagel
(Sigma-Aldrich) in Petri dishes with a diameter of 9 cm. The
pH of the medium was adjusted to 5.8 with 1N KOH and 1N
HCl. The medium was then autoclaved at 120 °C and 0.1 MPa
for 20 minutes. Seeds were germinated in an environmentally
controlled growth chamber (LPH-411S, NK systems) fitted with
fluorescent light (FLR40SW/M/36, NEC) at a photosynthetic

photon flux density of 300 μmol photons/m2/s under continuous
white light conditions at 20 °C. All experiments were conducted
at Takasaki University of Health and Welfare, Takasaki City,
Gunma Prefecture, Japan (36.33°N, 139.00°E) between
September 2021 and September 2022, in a humid subtropical
climate (Köppen climate classification: Cfa).

Media Composition for Shoot Regeneration
Shoot regeneration efficiency was examined using a medium
supplemented with different basal salt mixtures, sugars, and
concentrations of BAP and NAA (Nacalai Tesque) following
a previously described method [14] (Table 1). NAA was
dissolved in a 10 mM NaOH solution and BAP was dissolved
in a 10 mM HCl solution before either was added to the culture
media. All media contained 0.5 g/L polyvinylpyrrolidone
(Nacalai Tesque) and 2.5 g/L Phytagel (Sigma-Aldrich) at pH
5.8. The medium was sterilized via autoclaving at 121 °C for
20 minutes. Cotyledons from 7-day-old seedlings were used as
explants and placed on the medium in Petri dishes with a
diameter of 9 cm. Each treatment included 16 explants that were
cultured per dish, with 8 dishes per treatment, for a total of 128
explants. The explants were maintained for 4 weeks under
continuous white light conditions (photosynthetic photon flux

density=300 μmol photons/m2/s) at 25 °C and transferred to
fresh medium every 2 weeks.
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Table . Media composition and growth regulators for shoot regeneration of lettuce.

NAAb (mg/L)BAPa (mg/L)SugarBasal salt mixMedium

0.10.53% sucrose1 × MScM1

0.010.053% sucrose1 × MSM2

0.10.053% sucrose1 × MSM3

10.053% sucrose1 × MSM4

0.010.53% sucrose1 × MSM5

10.53% sucrose1 × MSM6

0.0153% sucrose1 × MSM7

0.153% sucrose1 × MSM8

153% sucrose1 × MSM9

0.10.53% sucrose1/2 × MSM10

0.10.53% sucrose1 × B5M11

0.10.56% sucrose1 × MSM12

0.10.51.5% glucose1 × MSM13

aBAP: 6-benzylaminopurine.
bNAA: 1-naphthaleneacetic acid.
cMS: Murashige and Skoog.

Seed Coat Color Measurement
The color parameters of the seeds from each cultivar were
measured with an SD 7000 spectrophotometer (Nippon
Denshoku Industries) using the CIELAB L*, a*, and b* color
scale. The L* axis represents the degree of brightness ranging
from black (L*=0) to white (L*=100). The a* and b* axes
represent redness (positive number) to greenness (negative
number) and yellowness (positive number) to blueness (negative
number), respectively [15].

Total Flavonoid Content Analysis
The total flavonoid content was analyzed according to a
previously described method, with some modifications [16]. A
50 µg aliquot of seeds was homogenized in 0.5 mL of 80%
methanol with 5.0 mm stainless beads (Biomedical Science) at
1100 rotations per minute for 45 seconds using a Shake Master
(Biomedical Science). The homogenized solutions were
incubated for 15 minutes at 70 °C, then centrifuged at 10,000
× g for 10 minutes at 4 °C. The resulting supernatants were
incubated at 60 °C, and the dried pellets were dissolved in 20
µL of 80% methanol. The extracts were spotted on a 5 × 5 cm
TLC Silica gel 60 F₂ ₄ plate (Merck). For staining, the blots
were sprayed with a methanolic solution containing 1%
diphenylboric acid 2-aminoethylester (DPBA, Tokyo Chemical
Industry), then sprayed with a methanolic solution containing
5% PEG 4000 (Nacalai Tesque). The fluorescence was
visualized using an iBright CL1000 imaging system (Thermo
Fisher Scientific).

Statistical Analyses
All statistical analyses were performed using EZR software
[17], a free graphical interface for R that is widely used for
standard biostatistical analyses. Significance was determined
using a Student t test for two-group comparisons or a one-way

ANOVA followed by a Tukey test for multiple group
comparisons. The statistical significance was set at P<.01 for
Student t tests and P<.05 for one-way ANOVA. All values are
expressed as means and SE.

Results

In this study, we found that seed coat color is strongly associated
with the cytokinin requirement for efficient direct shoot
regeneration across 6 leaf lettuce cultivars. White seed cultivars
exhibited their highest regeneration efficiency at low BAP
concentrations (0.05 mg/L), whereas brown seed cultivars
required higher BAP levels (0.5 mg/L) to achieve comparable
regeneration. Seed brightness (L*) and yellowness (b*)
positively correlated with the M3/M1 ratio, supporting seed
coat color as a predictive morphological marker.

Effects of Medium Composition on Shoot Regeneration
BAP and NAA are commonly used as plant growth regulators
for regenerating lettuce shoots [8,10,14,18]. We examined the
effects of different concentrations of BAP and NAA on the
efficiency of shoot regeneration in Chima-sanchi and
Chirimen-chisya cultivars (Figure 1). We used different
concentrations of BAP with 0.1 mg/L NAA (M1, M3, and M8).
The shoot regeneration efficiency was highest in Chima-sanchi
(Figure 1C) and Chirimen-chisya (Figure 1D), with 0.05 mg/L
BAP (M3) and 0.5 mg/L BAP (M1), respectively. We then
tested different concentrations of NAA with 0.5 mg/L BAP
(M1, M5, and M6). The efficiency was highest in Chima-sanchi
using 0.1 mg/L NAA (M1) (Figure 1C). The Chirimen-chisya
shoot regeneration efficiency did not differ between the 0.1
mg/L (M1) and 1 mg/L (M6) NAA treatments (Figure 1D). The
shoots of both cultivars weakly regenerated when treated with
5 mg/L BAP (M7-9; Figure 1). The BAP concentration strongly
and cultivar-dependently influenced the shoot regeneration
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efficiency, whereas the basal salt mixture and sugar composition did not (Multimedia Appendices 1 and 2).
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Figure 1. Shoot regeneration from cotyledon segments of (A) Chima-sanchi and (B) Chirimen-chisya on medium M1 after 4 weeks of culture. Bar=1
cm. Effects of different concentrations of BAP and NAA on shoot regeneration from cotyledon segments of (C) Chima-sanchi and (D) Chirimen-chisya
after 4 weeks of culture (n = 16 explants per dish × 8 dishes). All media were supplemented with 1 × MS, 30 g/L sucrose, and 0.5 g/L polyvinylpyrrolidone.
Different letters indicate statistically significant differences (one-way ANOVA followed by Tukey test, P<.05). BAP: 6-benzylaminopurine; MS:
Murashige and Skoog; NAA: 1-naphthaleneacetic acid.
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Seed Coat Color Phenotype and Relationship With
Cytokinin Requirement
The seed coat color is a key phenotypic trait in many crops such
as lettuce [19-21]. The Chima-sanchi seeds were lighter, redder,
and yellower than those of Chirimen-chisya (Figure 2). The
ratio of shoot regeneration efficiency under 0.05 mg/L BAP to
that under 0.5 mg/L BAP (M3/M1) positively correlated with

seed brightness (L*) and yellowness (b*) in all 6 cultivars
(r=0.834 and 0.722, respectively; Figure 3B and D; Multimedia
Appendix 3). The brown-seeded cultivars contained more
flavonoids than the white-seeded cultivars (Multimedia
Appendix 4). The regeneration efficiency of the white-seeded
types was higher than that of the brown-seeded types, indicating
that flavonoid accumulation negatively modulates cytokinin
responsiveness.
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Figure 2. (A) Seed samples of Chima-sanchi (left) and Chirimen-chisya (right). Average values of CIE (B) L*, (C) a*, (D) b* color coordinates of
seed coat color in the cultivars (n=5). Horizontal bars within the box indicate the median value of the data, and the outer vertical bars represent the
maximum and minimum values of the data. **P<.01 (Student t test).
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Figure 3. (A) Samples of 6 lettuce cultivars. Genotype names are as follows, clockwise from the upper left: Chima-sanchi, Red fire, Shiki-beni, Green
wave, Fringe green, and Chirimen-chisya. Bar=1.0 cm. Correlations between values of CIE (B) L*, (C) a*, (D) b* color coordinates of seed coat color
(n=5) and ratio of shoot regeneration efficiency using M3 to the efficiency using M1 (M3/M1) in the 6 cultivars (n = 16 explants per dish × 8 dishes)
are shown.
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Relationship Between Flavonoid Biosynthesis and
Shoot Regeneration Capacity
Flavonoids are secondary metabolites that play multiple roles
in auxin transport, oxidative stress tolerance, and cell division
[22]. In Arabidopsis, transparent testa (tt) mutants are defective
in enzymes or regulatory factors involved in the flavonoid
biosynthetic pathway. These mutants have a pale seed coat and
show altered responses to phytohormones [23]. The Arabidopsis
tt4 mutant is deficient in chalcone synthase, a key enzyme in
the flavonoid biosynthetic pathway. The Arabidopsis tt4 mutant
has a pale yellow seed coat and markedly reduced shoot
regeneration efficiency compared with the wild type [24]. This
finding suggests that certain downstream flavonoid metabolites
produced after chalcone synthase catalysis are required for
efficiently regenerating shoots in Arabidopsis. The brown seed
cultivars contained higher levels of flavonoids than the white
seed cultivars in this study (Multimedia Appendix 4); however,
the shoot regeneration efficiencies of the brown seed cultivars
were considerably lower (Figure 3). These patterns imply that
although flavonoid metabolism may influence regenerative
competence, the mechanisms underlying this metabolism differ
between lettuce and Arabidopsis. However, the strong
correlation we observed between seed coat color and the optimal
BAP concentration provides a practical morphological marker
for predicting the cytokinin requirements of leaf lettuce.

Discussion

Principal Findings
Seed coat color is a simple morphological marker for predicting
the most appropriate cytokinin concentration required for
efficiently regenerating shoots regardless of lettuce cultivar.
This approach can be quickly and easily used for optimizing
regeneration conditions, thereby increasing the efficiency of
transgenic and genome-edited lettuce production. However, this
study was limited to 6 leaf lettuce cultivars, which were tested
under controlled laboratory conditions. Further validation with

additional genotypes and under different environmental
conditions is necessary. This marker-based method is more cost-
and labor-efficient for laboratories; however, scaling up tissue
culture systems for industrial use remains challenging because
maintaining aseptic conditions, controlling the environment,
and performing manual subculture steps substantially increases
labor and energy costs. Further technical improvements and
validation studies are required before genotype-specific
protocols can be applied to large-scale propagation or
transformation systems. However, integrating visible traits, such
as seed coat color, into regeneration and transformation
workflows could help balance the overall costs and benefits of
cultivar-specific plant biotechnologies and support the broader
use of lettuce as a bioproduction platform.

Conclusion
Seed coat color is strongly correlated with the cytokinin required
for efficiently regenerating shoots in leaf lettuce. The maximum
shoot regeneration occurred with 0.05 and 0.5 mg/L BAP for
white and brown seed cultivars, respectively.
Pigmentation-related metabolites, possibly flavonoids, may
modulate cytokinin responsiveness during the regeneration
process. This simple visual marker can accelerate the
optimization of regeneration systems, reduce experimental costs,
and facilitate cultivar-specific transformation. Our findings
directly support the development of lettuce cultivars with
specific traits, such as enhanced yield, stress tolerance, and
nutritional value, by enabling the rapid establishment of efficient
regeneration and transformation protocols. Additionally,
understanding the interplay between flavonoid metabolism and
cytokinin signaling may provide new options for engineering
regenerative competence in other horticultural crops. Our
findings not only clarify the physiological basis of
genotype-dependent regeneration but also provide a practical
framework that connects the fundamental knowledge of plant
regeneration mechanisms to their application in lettuce breeding
and commercial production.
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Multimedia Appendix 1
Effects of different basal media on shoot regeneration from cotyledon segments of (A) Chima-sanchi and (B) Chirimen-chisya
after 4 weeks of culture (n = 16 explants per dish × 8 dishes). All media were supplemented with 30 g/L sucrose, 0.5 mg/L
6-benzylaminopurine, 0.1 mg/L 1-naphthaleneacetic acid, and 500 mg/L polyvinylpyrrolidone. Different letters indicate statistically
significant differences (one-way ANOVA followed by a Tukey test, P<.05).
[PNG File, 21 KB - xbio_v4i1e70496_app1.png ]

Multimedia Appendix 2
Effects of different sugar concentrations and types on shoot regeneration from cotyledon segments of (A) Chima-sanchi and (B)
Chirimen-chisya after 4 weeks of culture (n = 16 explants per dish × 8 dishes). All media were supplemented with 1 × Murashige
and Skoog, 0.5 mg/L 6-benzylaminopurine, 0.1 mg/L 1-naphthaleneacetic acid, and 500 mg/L polyvinylpyrrolidone. Different
letters indicate statistically significant differences (one-way ANOVA followed by a Tukey test, P<.05).
[PNG File, 21 KB - xbio_v4i1e70496_app2.png ]

Multimedia Appendix 3
Shoot regeneration efficiency using M1 and M3 and CIELAB values of seed coat color in 6 lettuce cultivars. 1: w=white seed
cultivar, b=brown seed cultivar. 2: L* corresponding to the brightness, a* to the red/green coordinates, and b* to the yellow/blue
coordinates.
[PNG File, 32 KB - xbio_v4i1e70496_app3.png ]

Multimedia Appendix 4
The flavonoid content of methanolic extracts of seeds in 6 lettuce cultivars. Bar=0.5 cm.
[PNG File, 118 KB - xbio_v4i1e70496_app4.png ]
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Abstract

Background: Spaceflight presents unique environmental stressors, such as microgravity and radiation, that significantly affect
biological systems at the molecular, cellular, and organismal levels. Astronauts face an increased risk of developing cancer due
to exposure to ionizing radiation and other spaceflight-related factors. Age plays a crucial role in the body’s response to the
cellular stresses that lead to cancer, with younger organisms generally exhibiting more efficient response mechanisms than older
ones. The vast majority of research investigating breast cancer risk from spaceflight uses cell lines exposed to simulated radiation
and microgravity, but cell lines cannot capture the combinatorial response expressed across tissues, organs, and systems to real
radiation and microgravity in space.

Objective: The primary objective of this in silico observational study is to characterize the molecular response to spaceflight
of in vivo murine mammary tissue. We use an ensemble of linear binary classifiers to identify the molecular biomarkers enriched
in this response using mice flown on the International Space Station. The secondary objective is to determine if age plays a role
in this response.

Methods: The National Aeronautics and Space Administration (NASA) Open Science Data Repository has curated transcriptomic
data obtained from 10 BALB/cAnNTac female mice flown on the International Space Station and 33 control mice kept on earth
(OSD-511). In this observational study focused on two age groups (old/young), we used an ensemble of 4 machine learning binary
classifiers with linear decision boundaries (logistic regression, support vector machine, stochastic gradient descent, and single-layer
perceptron) to analyze gene expression profiles to predict age (old vs young) and condition (spaceflight vs ground control). Using
the genes our ensemble identified as most predictive, we performed pathway enrichment analysis to investigate the molecular
pathways involved in spaceflight-related health risks, particularly in the context of breast cancer.

Results: The pathway enrichment analyses revealed age-differentiated responses to spaceflight (false discovery rate–adjusted
q values<.05). Among the 10 mice flown in space, younger mice exhibited significantly enriched pathways related to lipid
metabolism and inflammatory stress signaling. All space-flown mice demonstrated evidence of adaptation in retinoid metabolism
and peroxisome proliferator-activated receptor signaling in response to microgravity and radiation relative to their 33 ground
control counterparts.

Conclusions: Spaceflight-induced breast cancer risk manifests through distinct age-specific mechanisms: younger individuals
face risk through maladaptive metabolic hyperactivity and oxidative cycling, while older individuals are vulnerable due to impaired
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stress responses and accumulated metabolic dysfunction. Both age groups ultimately face elevated carcinogenic potential through
different but converging pathways. These findings highlight the critical role of age in modulating the response to spaceflight-induced
stress and suggest that these molecular pathways may contribute to differential outcomes in tissue homeostasis, metabolic disorders,
and breast cancer susceptibility.

(JMIRx Bio 2026;4:e73041)   doi:10.2196/73041

KEYWORDS

machine learning; spaceflight; mammary tissue; gene expression; mice; breast cancer; feature importance

Introduction

Spaceflight exposes living organisms to a unique set of
environmental challenges, including microgravity [1], radiation
[2], and altered gas composition [3], which can significantly
impact biological systems at the molecular, cellular, and
organismal levels. Several systems have been shown to be
impacted in both male and female organisms, including the
cardiovascular [4], musculoskeletal [5], immune [6], neurologic
[7], hepatic [8], and ophthalmologic [9] systems, to name a few.
Although there is currently no evidence of increased
gynecological cancer incidence among female astronauts [10],
earth-based mouse studies using ionizing radiation, including
simulated galactic cosmic radiation, suggest that they may face
an increased risk of breast cancer when exposed to space
radiation [11]. Exposure to ionizing radiation is well established
as a risk factor for breast cancer [12], and both microgravity
and simulated microgravity have been shown to enhance the
tumorigenic potential of breast cancer cells grown in vitro
[13-15]. Furthermore, spaceflight disrupts circadian rhythms,
and consequent lower levels of melatonin reduce its efficacy in
inhibiting cancer cells [16,17]. Mammary cellular response to
spaceflight has been shown to differ with age, as younger
organisms typically exhibit more efficient cellular repair and
adaptive mechanisms than their older counterparts [18].
Adolescent murine mammary glands exposed to ionizing
radiation show increased activation of mammary stem cell and
Notch signaling pathways, heightened mammary repopulating
activity, and an increased propensity to develop estrogen
receptor–negative tumors [19]. A history of ionizing radiation
to the chest is a risk factor for breast cancer. The Childhood
Cancer Survivor Study indicates that breast cancer risk is highest
in young women treated for Hodgkin lymphoma, but it is also
increased in those who received moderate-dose chest radiation
for other pediatric or young adult cancers [20]. In summary,
current research suggests that female astronauts are at a higher
risk of developing breast cancer than their terrestrial
counterparts, with age being a contributing factor to this
increased vulnerability.

The vast majority of research into the risk of breast cancer due
to spaceflight has been conducted using simulated radiation and
microgravity on either female mice or human breast cell lines.
Monti et al [21] found that normal and cancerous breast cell
response to microgravity varies drastically, depending on
whether the cells are adhered or attached in the organoid model.
Kannan et al [22] exposed breast cancer cells to simulated
microgravity and compared cells exposed to 10 g and 1 g forces
and the respective response in proliferation, cell-cell interaction,

and formation of 3D structures, migration, and invasiveness.
Although in vitro studies are valuable for mechanistic insights,
high-throughput screening, and controlled manipulations, they
cannot fully replicate the physiological context of an intact
organism. Although simulated microgravity and radiation
experimentation on cell lines are much less expensive and
resource-intensive approaches than controlled spaceflight
experiments, they fail to reproduce the full combinatorial
spectrum of the spaceflight environment. Sarkar and Pampaloni
[23], in their study of bone marrow remodeling and immune
dysfunction in space, note that it remains uncertain how well
various microgravity simulation methods replicate the conditions
of actual microgravity. They also emphasize that differences in
equipment may influence experimental reproducibility, as past
studies have frequently produced conflicting results [23].

Bioinformatic approaches have been used to study the effect of
spaceflight on health. Many methods in bioinformatics, such
as genome-wide association studies and differential gene
expression analysis, leverage statistical hypothesis testing as a
mechanism to discover new insights. Integrating machine
learning (ML) into established bioinformatics and computational
biology frameworks has significantly advanced the development
of predictive models and analytical tools across molecular
evolution, proteomics, systems biology, and disease genomics
[24]. ML and artificial intelligence (AI) models are becoming
more complex, trained on larger datasets, and run on faster
hardware. These trends are accelerating adoption across
domains, including bioinformatics. Casaletto et al [25] leveraged
an ensemble of ML algorithms to identify genes most predictive
of lipid density in murine liver tissue. Building accurate models,
particularly with high-dimensional predictors such as gene
expression, typically benefits from large sample sizes [24]. To
mitigate this, researchers use some form of feature selection—a
broad collection of techniques that reduces the dimensionality
of the feature space [26,27]. Filtering methods such as
coefficient of variation and feature correlation to a target are
examples of feature selection techniques. Traditional ML
algorithms such as single-layer perceptrons and logistic
regression may be considered weak learners in the context of
high-dimensional datasets—but, leveraged together in an
ensemble, such weak learners can achieve excellent performance
[28].

The use of ML to study spaceflight-induced changes in
mammary gene expression can offer valuable insights into the
mechanisms of breast cancer development. In this study, we
examine the gene expression profiles from a controlled in vivo
experiment in which young and old mice were exposed to
spaceflight. The mammary glands were dissected and the tissue
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used for transcriptomic analysis. We are repurposing the data
from this study to explore the use of traditional ML methods
including random forest, logistic regression, support vector
machine, and the single-layer perceptron to determine how
murine mammary tissue responds to spaceflight and whether
age is a factor. Using the coefficients of simple models such as
these to determine feature importance makes this approach very
transparent and easy to understand, and combining models into
an ensemble makes it a powerful and robust approach.

Methods

In this section, we discuss the data on which this research is
based and how we preprocessed it for our ML ensemble. We
describe the ensemble of ML algorithms we leveraged, how we
derived feature importance from the trained models, and how
we combined and filtered the results of the models to form a
final set of gene results from our experiments.

Ethical Considerations
We used OSD-511 as the source of data for our observational
study. All National Aeronautics and Space Administration
(NASA) rodent research missions, including Rodent Research
Reference Mission 1 (RRRM-1) from whence our data are
derived, are required by US federal law to follow strict humane
care and use of laboratory animals under the provisions of the
Health Research Extension Act of 1985 [29]. As an

observational study, our research was conducted on data from
an already-published experiment. The authors believe the
repurposing of existing datasets not only maximizes the
cost-effectiveness of those studies, it also eliminates the need
to further expose animals to the conditions of spaceflight and
ultimately sacrifice animals for novel research.

Data
In the RRRM-1, a total of 43 female BALB/cAnNTac mice
were included in the study, consisting of 21 younger mice (aged
9‐12 weeks, YNG) and 22 older mice (aged 32 weeks, OLD).
Among the younger mice, 5 were flown in space, 8 were kept
in the Animal Enclosure Module (AEM), and 8 were housed in
regular vivarium cages (VIV). Vivarium controls are included
in spaceflight studies to distinguish the effect of the cage used
in spaceflight (ie, AEM) from the ambient effects of spaceflight
(eg, radiation, microgravity). In this research, we do not explore
that distinction, so we combined the VIV and AEM control
groups into a single ground control group called “GC.” For the
older mice (OLD), 5 were flown in space, 7 were housed in
flight hardware, and 10 in vivarium cages. Note that there was
no basal group included in the design of their experiment. After
40 days in space, the mice were safely returned to Earth, given
2 days to recover (Live Animal Return), and then euthanized.
Mice flown in space and kept in standard cages are denoted
FLT. Table 1 summarizes the distribution of mice in the
experiment.

Table . Distribution of mice in different experimental groups, including flight habitat (AEM) and vivarium (VIV), which together constitute the overall
ground control (GC=AEM+VIV), and spaceflight (FLT) groups for both the old (OLD) and young (YNG) cohorts. Marginal totals are provided in the
last column of the table.

TotalYNG (9-12 weeks)OLD (32 weeks)

1587AEM (Animal Enclosure Module)

18810VIV (vivarium)

331617GC (ground control)

1055FLT (spaceflight)

The dataset contains ribo-depleted total RNA sequencing
(RNA-seq) data from mammary glands. The sequences for each
mouse were aligned once using Mus musculus Spliced
Transcripts Alignment to a Reference (STAR; version 2.7.10a)
and once with RNA-Seq by Expectation-Maximization (RSEM
version 1.3.1) to the Ensembl release 107, genome version
GRCm39. These data are available in the Open Science Data

Repository [30] as dataset OSD-511 [31]. Both datasets (RSEM,
STAR) are published with OSD-511.

The principal component analysis (PCA) plots of the data are
shown in Figure 1. PCA projections that display approximately
linearly separable classes suggest that binary classifiers with
linear decision boundaries, such as those in our ensemble, may
achieve strong classification performance.
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Figure 1. PCA plots for each of the experiments (augmented datasets with RSEM, STAR). Figures 1A-C are PCA plots of the ground control mice,
spaceflight mice, and all mice, respectively, and are colorized by age. Figures 1D-F are PCA plots of the young mice, old mice, and all mice, respectively,
and are colorized by condition. PC: principal component; PCA: principal component analysis; RSEM: RNA-Seq by Expectation-Maximization; STAR:
Spliced Transcripts Alignment to a Reference.

Based on the 3D PCA plot in Figure 1A, age among ground
control mice did not seem to be predictable from gene
expression with a linear decision boundary. This supportd the
use of the control group and provided a neutral baseline for later
comparisons. In Figure 1B, gene expression differed between
young and old mice in response to spaceflight. Figures 1D and
E showed a clear distinction between ground control and
spaceflight among young and old mice, respectively. This
pattern suggested an age-related response to spaceflight and
motivated us to investigate further. Figure 1C did not clearly
distinguish young from old mice, but Figure 1F showed a clear
separation between the unmarginalized age groups. This
suggests that the impact of age on gene expression is not as
significant as the impact of spaceflight.

ML model performance generally improves with more data
points. Additionally, training and testing must be performed on

a sufficient number of data points to accurately quantify model
performance. Data augmentation is a collection of methods used
to increase the size of a dataset for training and testing. In our
research, we combined the RSEM and STAR datasets by
creating 2 data points per biological sample: one for the RSEM
quantification and one for the STAR quantification. This
increased the size of our dataset by a factor of 2, with the caveat
that the augmented samples are not independent (see points in
Figure 1). Because ML model performance improves with fewer
dimensions, we performed the filtering methods described in
Table 2 to reduce the dimensionality of the dataset. We removed
genes that have nonnumeric values or not-a-number values,
genes that do not code for proteins, genes with counts below
30 in 80% of the samples, genes with a coefficient of variation
lower than 0.4, and nondifferentially expressed genes at an α
level of 0.1.

Table . Data-filtering methods applied to this dataset include removing genes with not-a-number values, noncoding genes, and genes that are not
correlated to the binary targets (old vs young or ground control vs spaceflight). Columns include the total count of genes before the filter was applied,
the total number of genes removed by the filter, and the count of genes remaining after the filter was applied. These filters were executed in order from
top to bottom, leaving a total of 750 genes for training our models.

Count after filterNumber removed by filterCount before filterFiltering method

56,840056,840Remove genes with not-a-number
values

21,68135,15956,840Remove non–protein-coding genes

75020,93121,681Remove noncorrelated genes

After reducing the dimensionality of the data, we applied three
transformations. First, we transformed the data into transcripts
per million to account for sequencing depth and gene length,
thus making the gene expression values comparable within a
sample. Second, we applied a log transformation to stabilize

the variance inherent in transcriptomic count data. Third, since
coefficient-based ML algorithms require all the feature values
to be on the same scale, we used the StandardScaler method
from scikit-learn to convert all feature values to z-scores.
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Figure 2 shows the graphical summary of the methods we used
in our in silico experiments to create sets of genes that are
predictive of their respective targets. We introduce the notation
“GROUP:target” to denote the experiment where GROUP

represents the subsets ground control (GC) and spaceflight
(FLT) or the subsets young mice (YNG) and old mice (OLD),
and the target represents the binary class age or condition (cnd)
that the ML model is trained to predict.

Figure 2. Graphical summary of the methods used in this research. (A) The OSD-511 dataset contains RNA-seq data for mouse mammary tissue. (B)
The data were filtered to reduce dimensionality, normalized, log-transformed, and standardized. (C) Data were divided into GC and FLT groups to
predict age and divided into YNG and OLD groups to predict condition. (D) Each subset of data was used to build 4 models in the ensemble. (E) Each
model generated two sets of genes most predictive of the target. (F) The two sets from each model were unioned into a single set per model. (G) The
four sets from each model were majority-intersected to yield the intermediate set of genes per experiment. cnd: condition; FLT: spaceflight; GC: ground
control; OLD: old; YNG: young.

Figure 2 shows all the steps in the pipeline to produce the
intermediate result set of genes, which were further processed
as described in Figure 3.
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Figure 3. Venn diagrams depicting set difference operations to identify genes uniquely predictive of age (A and B) and condition (C and D) for a given
subset of mice. In Figure 3A, we remove ALL:age genes and FLT:age genes that intersect with GC:age to obtain those genes that uniquely predict age
for ground control mice. These genes are represented by the light blue part of the Venn diagram. Similarly, we remove ALL:age genes and GC:age
genes that intersect with FLT:age genes to obtain those genes that uniquely predict age for space-flown mice. These genes are represented by the light
orange part of that Venn diagram. In Figures 3C and 3D, we use the same logic to obtain those genes that uniquely predict the condition of old mice in
the yellow, textured part of the Venn diagram and those genes that uniquely predict the condition for young mice in the pink part of the Venn diagram.
These set operations yielded the final gene results we discuss in the next section. cnd: condition; FLT: spaceflight; GC: ground control; OLD: old; YNG:
young.

Algorithms
We leveraged 4 supervised ML algorithms on the gene
expression data to predict labels associated with each sample.
These models were trained and tested to classify binary labels
(spaceflight vs ground control and old vs young) and include
stochastic gradient descent (SGD), logistic regression (LR),
single-layer perceptron (SLP), and support vector machine
(SVM). These models were specifically selected to capture
linear decision boundary classification patterns.

The SGD classifier from scikit-learn trains a linear classifier
using stochastic gradient descent to update the coefficients of
the input features. SGD iteratively updates the coefficients based
on the gradient of the loss function, using one training sample
at a time to compute each gradient step, rather than the whole
dataset. We used the scikit-learn implementation of
SGDClassifier with all default hyperparameters. LR, despite its
name, is a binary classification algorithm that provides a
probability for the binary target prediction based on a set of
discrete or continuous features [32]. Because it does use
regression, there are model coefficients associated with the
features that may be used for feature importance. We used the
scikit-learn implementation of LR as a binary classifier with
all default values for the hyperparameters. The SLP was
developed in the 1950s by Frank Rosenblatt and is the most
basic form of neural network [33]. The input features are
weighted in a linear combination that can either be sent through
a sigmoidal activation function for binary classification or
through a linear activation function for regression. Feature
importance is conveniently derived directly from the feature
weights, which makes the SLP an easy-to-interpret ML

algorithm. We used the scikit-learn implementation of SLP as
a binary classifier with all default hyperparameter values. The
SVM was created by Hava Siegelmann and Vladimir Vapnik
as a margin-based classifier using so-called support vectors to
separate classes in the feature space [34]. Feature importance
is derived directly from the coefficients of the support vectors
of linear kernels. We used the scikit-learn implementation of
the linear SVM with all default hyperparameter values.

All four models were trained using a train/test split of 80/20
with GroupShuffleSplit() from sklearn.model_selection. This
method allows users to specify which samples must be grouped
together after the split, permitting us to keep the RSEM and
STAR replicates in the same train and test groups and thereby
prevent target leakage. The models were validated using the
scikit-learn implementation of k-fold cross validation, and we
used k=5 as the number of folds because we had such few
samples. Because of the small number of samples, we repeated
the experiments several times using different seeds for the
random number generators used throughout the pipeline. We
deployed the four classification algorithms as binary classifiers
in two experiments: predicting age (OLD vs YNG) and
predicting condition (FLT vs GC) using gene expression data
as predictors. After training each model, we identified the
features most predictive of the classes using the two methods
described in the next section.

Per-Model Feature Importance
In our method, we combined multiple ML algorithms into an
ensemble classifier to predict either experimental condition
(ground control vs spaceflight) or age (young vs old). We
quantified feature importance by coefficient magnitude in two

JMIRx Bio 2026 | vol. 4 | e73041 | p.18https://bio.jmirx.org/2026/1/e73041
(page number not for citation purposes)

Casaletto et alJMIRX BIO

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


parts of the pipeline: cross-validation and a standard train-test
split. In the cross-validation setting, the data were partitioned
into 5 folds, and models were then trained on a single fold and
evaluated on the other 4 folds. This procedure yielded 5 fitted
estimators. For each estimator, scikit-learn provided coefficients
from which we derived feature importances. We then averaged
the importances for each feature across the folds, ranked the
features according to this mean value, and kept the top 50
highest-coefficient features. In the train-test approach, we fitted
the model to the training set, ranked the coefficients by
magnitude and selected the top 50 as the most predictive
features. We combined these two gene sets together into a single
set of genes using the union set operation and then removed
genes overlapping with other experiments as described in the
next section.

Per-Experiment Ensemble Voting
Ensemble predictions are commonly aggregated by majority
voting [35]. For each experiment, we first formed, for each
algorithm, the union of the two feature importance lists. We
then applied majority voting across the 4 algorithm-specific
unions, retaining genes that were present in at least 3 of them.
We obtained the final label predictive set with a difference
operation, as described in the next section.

Final Gene Set Formulation
To determine the genes that are most predictive of a target (age
or condition) for a given subset of mice (eg, YNG vs OLD or
FLT vs GC), we removed those genes that are generally
predictive of the target, regardless of their subset. In this way,
we identified the marginal set of genes that are uniquely
predictive of the target within that subset. For example, in the
experiment in which we predicted age, we ran 3 experiments:

one in which we used only ground control samples to predict
age (GC:age), one in which we used only spaceflight samples
to predict age (FLT:age), and one in which we used all the
samples combined to predict age (ALL:age). Each of these 3
experiments produced a set of gene results as previously
described. In Figure 3, we showed how we formulated our final
set of gene results for analysis. We adopted the notation {X} \
{Y} to represent the difference in set membership between sets
X and set Y.

Results

In this section, we discuss the final results of our 4 experiments:
predicting age for ground control samples, predicting age for
spaceflight samples, predicting condition for old samples, and
predicting condition for young samples.

Model Performance
Since our models do not classify outcomes as “positive” and
“negative” with different associated costs, metrics such as the
false positive rate and false negative rate offer limited insight.
Given the imbalanced class distribution between ground control
and spaceflight groups, accuracy is an inadequate performance
measure. To evaluate model performance using a single
comprehensive metric, we selected the F1-score, which
represents the harmonic mean of precision and recall, as our
primary performance indicator. Table 3 displays the F1-score
(averaged over 5 different random number generator seeds) of
each of the 4 classification models in the ensemble for the
experiments predicting age in FLT, GC, and ALL groups. The
train and test scores were obtained using the 80/20 train/test
split data sets, and the cross-validate score is the mean score
across the 5 folds.

Table . Average F1-score for training, testing, and cross-validation of each of the classification models (stochastic gradient descent, support vector

machine, logistic regression, and single-layer perceptron) for the experiments predicting age (FLTa:age, GCb:age) for those mice in the FLT and GC
groups.

Cross-validateTestTrainModel and experiment

Stochastic gradient descent

0.890.961.0FLT:age

0.980.991.0GC:age

Support vector machine

0.911.01.0FLT:age

0.991.01.0GC:age

Logistic regression

1.01.01.0FLT:age

1.01.01.0GC:age

Single-layer perceptron

1.01.01.0FLT:age

1.00.991.0GC:age

aFLT: spaceflight.
bGC: ground control.
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Table 4 displays the performance of each of the 4 classification
models in the ensemble for the experiments predicting the

condition for YNG and OLD groups.

Table . Average F1-score for training, testing, and cross-validation of each of the classification models for the experiments predicting condition

(OLDa:cndb, YNGc:cnd) for those mice in the OLD and YNG groups.

Cross-validateTestTrainModel and experiment

Stochastic gradient descent

0.840.971.0OLD:cnd

0.910.991.0YNG:cnd

Support vector machine

0.901.01.0OLD:cnd

0.921.01.0YNG:cnd

Logistic regression

1.01.01.0OLD:cnd

1.01.01.0YNG:cnd

Single-layer perceptron

0.940.961.0OLD:cnd

1.01.01.0YNG:cnd

aOLD: old.
bcnd: condition.
cYNG: young.

As shown in Tables 3 and 4, all the train scores had a perfect
F1-score, and all but 3 of the test scores in each table were also
perfect. The cross-validate score is useful in determining to
what extent there is bias in the model due to how the train and
test data were split, or how much the model is otherwise overfit.
The experiments predicting condition for young mice
outperformed the same experiments for old mice. The SLP and
LR models outperformed SGD and SVM in all experiments. In
Table 2, SGD scored the lowest F1-scores in both experiments
(OLD:cnd, YNG:cnd) predicting the condition. Because we

used the majority consensus for our feature voting algorithm,
we acknowledge SGD as the weakest learner for those
experiments and accept the results from the rest (majority) of
the ensemble. After training each model, we identified those
genes most predictive of their respective target. We present
these results in the next section.

Most Predictive Genes
In this section, we discuss the genes most predictive of the
targets for each experiment. Textbox 1 lists the genes most
predictive of the label for each of the experiments.

Textbox 1. List of genes most predictive of the target (age, condition [cnd]) for the given subset (GC [ground control], FLT [spaceflight], YNG [young],
OLD [old]).

GC:age

• Aip, Aldh2, Ceacam10, Ciao2b, Clec4d, Csn1s2a, Ctsz, Dmbt1, Gng2, Gstm1, Klk4, Lrrc30, Mrgprb1, Myh8, Nudt9, Or13a27, Pam, Park7,
Prom1, Psmc4, Psmd2, Slc5a5, Smyd2, Syngr2, Tle5, Vmn1r38, Wap, Wdr18, Yif1b, Znhit2

FLT:age

• Acsm1, Acss2, Adamdec1, Adcy10, Ahsg, Aldoa, Aldob, Ap2b1, Apoa1, Apoa2, Apoa4, Atp1a3, Atp6ap1, Bmp2k, Ces1g, Chrna5, Cps1, Cyp2c29,
Cyp2c50, Elovl3, Epyc, Fabp1, Fga, Fgb, Fmo3, Gbp11, Gc, Gnl1, Hadha, Hspa5, Immt, Lmod2, Lrrc59, Maob, Mat1a, Mogat2, Mrpl30, Mtch1,
Ncan, Psmb7, Ptk7, Rad23b, Ramp2, Rdh11, Scgb1c1, Serpinf2, Slc10a1, Slc25a3, Slc25a39, Slc27a5, Slc38a3, Ssx2ip, Stfa3, Sult3a1, Tat,
Tdrd9, Tmem259, Ugt2b34, Uox, Urod, Zfp747

YNG:cnd

• Aar2, Abcc6, Acot11, Apcdd1, Aspg, Cdcp3, Elovl3, Ergic1, Gale, H1f0, Hspb8, Kcng4, Ltc4s, Maff, Map3k4, Mogat2, Mrpl47, Mrps18a, Ncan,
Odad4, Pnpla5, Postn, Ppcs, Prune2, Rdh11, Scd2, Sfxn5, Smtnl2, Tekt1, Tmprss11a, Vstm2b

OLD:cnd

• 6430571L13Rik, Acad10, Actl6b, Agtr1a, Ambp, B3gnt7, Begain, Calca, Ceacam20, Cuta, Dgat2, Fgf21, Glud1, Igfbp4, Igsf21, Jmjd8, Krt12,
Krtap6-7, Map6d1, Mrpl42, Or2y1e, Or51r1, Or56b35, Rgs16, S100a9, Tcap, Trim9, Ttr, Vmn1r32
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The genes listed in constitute the final results of our ML
ensemble that resulted from the set operations portrayed in
Figure 3.

In Figure 4, we show the distribution of gene expression for the
most predictive genes of each experiment across the distribution
of all the genes that were used to train the models.

Figure 4. Scatter plots of variance versus mean for the experiments predicting age (top row) and predicting condition (bottom row). The blue points
are the background genes (ie, all 750 genes that were used to train the model), and the red points are most predictive of their respective target. cnd:
condition; FLT: spaceflight; GC: ground control; OLD: old; YNG: young.

As shown in Figure 4, the distribution of the genes identified
by our ML ensemble across the spectrum of expression is
approximately uniform. From that, we can infer that the ML
algorithms do not portray any bias based on the magnitude
(mean or variance) of the distributions of gene counts. This
indicates that the models and their ensemble are not vulnerable
to the heteroskedastic nature of gene expression count data.
Note that the distribution of genes predicting age is different
than the distribution of genes predicting condition because we
used the 750 genes most correlated to the respective target. We

next show which biological pathways are enriched by the
GC:age, FLT: age, YNG:cnd, and OLD:cnd gene sets.

Pathway Enrichment Analysis
We submitted our lists of most predictive genes to ShinyGO
(version 0.81)—an online pathway enrichment analysis tool
[36]—using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database [37], a false discovery rate cutoff
of .05, and minimum gene set intersection size of 2, and
displayed the top 5 most enriched pathways. The results of these
analyses are captured in Table 5.
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Table . Pathway enrichment analyses for the machine learning experiments. All corresponding false discovery rate q values were statistically significant
to an α level of less than .05.

False discovery rate q valueGenesExperiment and pathways

GCa:age

——b    No enrichment

FLTc:age

1.456e-07    Metabolic pathways • Ugt2b34, Cyp2c50, Maob
• Aldoa, Acsm1, Mat1a
• Elovl3, Cyp2c29, Fmo3
• Rdh11, Uox, Urod, Cps1
• Aldob, Mogat2, Tat
• Slc27a5, Adcy10, Atp6ap1
• Acss2, Hadha

0.00037    Fat digestion and absorption • Apoa1, Apoa4, Fabp1, Mogat2

0.00264    Biosynthesis of amino acids • Aldoa, Mat1a, Cps1, Aldob

0.00331    Peroxisome proliferator-activated receptor
signaling pathway

• Apoa1, Apoa2, Fabp1, Slc27a5

0.00347    Retinol metabolism • Ugt2b34, Cyp2c50
• Cyp2c29, Rdh11

YNGd:cnde

0.02312    Biosynthesis of unsaturated fatty acids • Elovl3, Scd2

0.03802    Fatty acid metabolism • Elovl3, Scd2

0.00779    Metabolic pathways • Ppcs, Elovl3, Ltc4s, Rdh11, Scd2, Mogat2,
Gale

• Rdh11, Scd2, Mogat2
• Gale

OLDf:cnd

——    No enrichment

aGC: ground control.
bNot applicable.
cFLT: spaceflight.
dYNG: young.
ecnd: condition.
fOLD: old.

The most important genes predicting the age in the ground
control group (GC:age) and those predicting the condition in
the old group (OLD:cnd) did not significantly enrich any of the
KEGG pathways. The genes most predictive of age in the
spaceflight group (FLT:age) enriched several KEGG pathways,
the top 5 of which are shown in . The metabolic pathways
enrichment represents a very broad class of biological functions
including lipid metabolism, energy metabolism, and xenobiotic
metabolism. The peroxisome proliferator-activated receptor
(PPAR) signaling pathway represents fatty acid oxidation,
lipoprotein metabolism, and an anti-inflammatory response.
Because retinoids are antioxidants, the retinol metabolism
pathway is likely responding to oxidative stress. The genes most
predictive of condition for the young mice (YNG:cnd) also
primarily enriched membrane lipid metabolism, inflammatory

stress signaling, and overall metabolic capacity. All these
pathways being enriched suggests that spaceflight amplifies
age-related differences in metabolic flexibility, especially in
pathways that manage lipid metabolism in response to
inflammation and oxidative stress. In the Discussion section,
we will explore this theme further in the context of breast cancer.

Discussion

Principal Findings
In this study, we used a novel approach combining results from
an ensemble of 4 linear classifier ML models to predict
condition (spaceflight or ground control) and age (young or old)
using features derived from gene expression data. The results
reveal distinct gene expression signatures that differentiate both
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age and exposure to spaceflight in mice, revealing some of the
molecular mechanisms that may underpin the effects of
spaceflight and aging and their potential impact on breast cancer.
In this section, we discuss the principal findings of our research
in the context of breast cancer, compare our approach to other
ML approaches on transcriptomic data, describe strengths and
limitations to our methods, and conclude with considerations
toward future directions of this research.

Our research finds that the younger mouse cohort mounted a
differential response to spaceflight with respect to their older
counterparts. One reason for this may be that younger cells have
higher plasticity, and therefore their tissue has greater capacity
to respond to the environment [38]. Older cells may have blunted
responses because they have exhausted their capacity to respond
due to accumulated stress [39]. Another reason may be signal
saturation: older tissue has chronic low-grade inflammation and
is already expressing a stress response to oxidative damage at
a baseline [40]. In the context of breast cancer risk due to
spaceflight, our research paradoxically suggests that the younger
cohort may have an increased risk due to the simultaneous
modulation of PPAR signaling and fatty acid biosynthesis. The
younger cohort gene expression enriched unsaturated fatty acid
metabolism pathways in the Elovl3 and Scd2 genes. Galactic
cosmic radiation generates reactive oxygen species, which attack
unsaturated fatty acids in membranes, leading to lipid
peroxidation [41]. Damaged lipids, if left unchecked, can cause
mitochondrial and nuclear membrane damage, leaving cells
struggling to maintain basic homeostasis [42]. The genes
enriching the PPAR signaling pathway (Apoa1, Apoa2, Fabp1,
and Slc27a5) are all PPAR-α genes, which promote the
breakdown of damaged fatty acids so they may be used as an
energy source [43]. This can lead to a vicious cycle whereby
fatty acids are synthesized and then oxidized, inducing reactive
oxygen species production, which causes more lipid
peroxidation [44]. The subsequent proliferation of peroxisomes
would put these younger mammary cells under chronic oxidative
stress and increase carcinogenic potential [45].

Our research suggests that older mice may be at increased risk
of breast cancer for different reasons. In the experiment
predicting condition (spaceflight vs ground control) for all mice,
their most predictive genes enriched pathways in retinol
metabolism and PPAR signaling. The genes enriching the retinol
metabolic pathway include Ugt2b34, Cyp2c50, Cyp2c29, and
Rdh11. The Rdh11 enzyme, or retinol dehydrogenase 11,
synthesizes retinoids, which regulate cell proliferation, promote
cell differentiation, and induce apoptosis—all of which help
prevent and suppress mammary gland tumor formation [46].
However, the Cyp2c50 and Cyp2c29 genes are degradation
enzymes in this pathway and lead to retinoid depletion.
Moreover, the Ugt2b34 gene is an excretion enzyme that
eliminates active retinoids. The overall metabolic impact on
this pathway may lead to the degradation of retinoids, which
would greatly increase the risk of developing breast cancer [47].
The simultaneous disruption of PPAR signaling and retinoid
metabolism in mammary tissue following spaceflight represents
a synergistic increase in breast cancer risk [48-50]. This two-hit
disruption is normally more severe in older animals due to
depleted antioxidant reserves and reduced metabolic flexibility

[51], suggesting that older individuals may face substantially
elevated breast cancer risk from spaceflight exposure.

Comparison to Prior Work
Zhang et al [52] built an ML model that leverages a transformer
architecture, incorporating phenotype prediction, biomarker
discovery, and identification of implicated biological processes
into a single model using transcriptomic data as features. Our
research provides similar types of analyses, but we use binary
classification models for phenotype prediction and two forms
of feature importance to identify biomarkers; we also leverage
an existing, well-used framework (ie, KEGG pathways) for
identifying biological processes. Smith et al [53] use a similar
set of data processing steps in their pipeline (converting gene
counts to transcripts per million, applying log transformations)
in an ML ensemble, but they use regression rather than
classification to predict phenotypes. Arnold et al [18] examined
the same dataset (OSD-511) as the one explored in this research
but used differential gene expression analysis to identify the
biomarker genes that distinguish young from old and spaceflight
from ground control mice. Differential gene expression analysis
is a commonly used technique for high-dimensional data but
suffers from multiple test burden and an inability to distinguish
between true and spurious correlations.

Strengths and Limitations
The first strength and motivating factor for studying this data
is to maximize the utility of underpublished in vivo research in
controlled spaceflight experiments. Murine experimentation in
space is very costly, time-consuming, and requires sacrificing
animals. As an observational study, we obtained real-world
insights without further cost and sacrifice. The second strength
of our approach is model interpretability. Particularly in the
context of predicting biomedical outcomes, using whitebox,
linear decision-boundary models such as SGD classifier, SVM,
LR, and SLP enables transparency, engenders trust, and provides
more straightforward biological insight into a high-dimensional
feature space such as gene expression data. The third strength
of our approach is the use of simple set operations (union,
intersection, and difference) to improve interpretability. The
fourth strength of our approach is the use of the KEGG database
as a trusted, well-known pathway enrichment analysis database
to further promote simplicity and trust.

The first limitation of our approach is that we excluded many
ML methods, such as multilayer perceptrons and other deep
learning architectures, that may outperform the ones we used
at the expense of simplicity and interpretability. The second
limitation of our study is the sensitivity of the results to our
preprocessing. For example, removing genes that have low
counts and are not correlated to the target reduces the
signal-to-noise ratio in a high-dimensional feature space.
However, because some biological processes are sensitive to
slight variations in gene expression, we may have removed
some of the genes that contribute to the phenotypes that our
models predicted. Filtering out genes that do not code for
proteins allows our pathway enrichment analysis to focus on
well-understood genes, though again, we understand that
noncoding genes may also have contributed to the phenotypes.
The third limitation of our study is the paucity of data. We would
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feel more confident in our results if we could explore a larger
and more varied collection of samples. The fourth limitation of
our study is the lack of an in vivo or in vitro validation of our
findings. Although the gold standard in biomarker identification
is the randomized controlled trial, our observational research
serves to inform such a study and can restrict the search space
of an otherwise very resource-intensive endeavor. The last
limitation of our research is that it relies on a single point-in-time
snapshot of the mammary transcriptome via bulk RNA-seq. A
better approach would be a longitudinal investigation that
elucidates time as a contributing factor to spaceflight response.

Future Directions
Our research has identified putative genes and pathways
implicated in age-differentiated pathological responses to
spaceflight in mammary tissue. Future work may include
single-cell RNA sequencing and proteomic sequencing to give
higher resolution and downstream validation, respectively.
Combining multiple datasets from similarly controlled
experiments to increase the number of biological replicates
would, in turn, increase confidence in our ML results. These
findings offer valuable information for further studies into the
impact of spaceflight on female astronaut health, reiterates
well-established roles between spaceflight and breast cancer
risk, and provides a straightforward ML approach to leverage
a vast array of unexplored data.
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This is the peer-review report for “Relationship Between Seed
Coat Color and Cytokinin Concentration in Efficiently
Regenerating Leaf Lettuce Shoots: In Vitro Experimental
Study.”

Round 1 Review

General Comments

Major Comments
• The presented work [1] brings new information.
• At the beginning of your abstract, you should write a

paragraph about the problem you want to solve.
• The abstract mentions statistical significance but does not

provide any details about how these were assessed or the
significance level (eg, P value). Details on the statistical
analysis methods used (eg, “significant at P<.05”) should
be added.

• The Introduction contains well-documented data that are
widely known. Hormonal information has been extensively
reported and reviewed. Against this background, authors
have to point out how this work is different from the earlier
reported work; what are the innovative findings reported
here? A strong and convincing justification is required.

• Introduction: While references are important, the paragraph
reads as somewhat overloaded with citations. Many
sentences contain a high number of citations, which can
disrupt the readability of the text. Try to reduce the
frequency of citations by grouping them more effectively
and summarizing the findings rather than listing individual
sources for every claim. This will help make the text more
fluid.

• The Methods section in its current form is not acceptable
because it requires more details, such as the latitude and
longitude of the culture area. Write a simple paragraph
describing the climate of the area and date of study.

• It is necessary to mention the active ingredient of
commercial chlorine bleach.

• Tween-20 is used with disinfectants to reduce surface
tension, thus increasing the disinfectant’s effectiveness.

• State the manufacturer of the MS medium and the quantity
used to prepare it half-strength.

• How were the hormone solutions prepared and dissolved?
• KOH and HCl are used in the pH adjustment process.
• It is necessary to mention the lighting intensity during the

incubation period of the cultures.

• The statistical analysis mentions EZR software, but there
is no explanation of why this particular software was
chosen.

• In the Discussion, authors have explained various
biochemical interactions and mechanisms that are widely
known and reported. Authors should give their own
reflections of the work. It is essential to include the
advantages and shortcomings of the work; what are the
limitations of this technology and its shortfalls? Authors’
own scrutiny of the data clarifications is decisive for the
impending research on this subject. This work is
field-oriented, the cost-benefit ratio is very significant, and
micropropagation will increase the cost, but this has not
been commented on in the text. Scale-up of the tissue
culture plant is not an easy task and would be challenging
work.

• Conclusion: What does this infer for lettuce production?
Need a little more work to show the significance of your
work.

• References: It is advised to refer only to recent work and
not old citations.
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Round 2 Review

General Comments

After reviewing the manuscript, I found substantial
improvements, which positively impacted its scientific value.
Therefore, the manuscript meets the requirements for
publication.
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This is the peer-review report for “Relationship Between Seed
Coat Color and Cytokinin Concentration in Efficiently
Regenerating Leaf Lettuce Shoots: In Vitro Experimental
Study.”

Round 1 Review

Reviewer’s Comments on the Manuscript
The manuscript [1] presents a well-structured and novel study
exploring the correlation between seed coat color and the
optimal concentration of 6-benzylaminopurine (BAP) for shoot
regeneration in leaf lettuce cultivars. The research is timely and
addresses a significant challenge in plant tissue
culture—genotypic variability in regeneration efficiency.

Strengths
The experimental design is solid, involving 6 cultivars with
distinct seed coat colors.

The use of the CIELAB color scale adds objectivity to
phenotypic assessments.

The identification of seed coat color as a potential morphological
marker for shoot regeneration efficiency is innovative and
potentially valuable for breeding and transformation programs.

Suggestions for Improvement
Language and clarity: While the scientific content is strong, the
manuscript would benefit from careful language editing for
grammar and fluency.

Statistical reporting: The statistical significance (eg, P values)
is noted, but a more detailed description of the statistical models
and effect sizes would enhance reproducibility.

Figures and tables: Ensure that all figures and tables referenced
(eg, Figure 1, Table S1) are clearly labeled and formatted for
clarity. Including a visual summary (graphical abstract) could
further enhance impact.

Discussion depth: The discussion of mechanisms linking seed
coat pigmentation to shoot regeneration could be expanded,
possibly integrating flavonoid biosynthesis and tissue culture
responsiveness more.

Conclusion: Consider sharpening the Conclusion to emphasize
the practical applications of the findings, especially in the
context of lettuce transformation systems.

Overall, this is a meaningful contribution to plant biotechnology
literature and warrants publication after minor revisions.
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This is the authors’ response to peer-review reports for
“Relationship Between Seed Coat Color and Cytokinin
Concentration in Efficiently Regenerating Leaf Lettuce Shoots:
In Vitro Experimental Study.”

Round 1 Review

Reviewer DQ [1]
The reviewer acknowledged the novelty and robustness of our
study [2] but suggested improving the language, statistical
reporting, and discussion depth.

Language and clarity: While the scientific content is strong, the
manuscript would benefit from careful language editing for
grammar and fluency.

• Response: The manuscript was professionally proofread
for grammar and clarity.

• Statistical reporting: The statistical significance (eg, P
values) is noted, but a more detailed description of the
statistical models and effect sizes would enhance
reproducibility.

• Response: Statistical methods are now detailed in the
Methods section (one-way ANOVA with Tukey test,
P<.05).

• Figures and tables: Ensure that all figures and tables
referenced (eg, Figure 1, Table S1) are clearly labeled and
formatted for clarity.

• Response: All figures and tables have been relabeled and
referenced in the correct order.

• Discussion depth: The discussion of mechanisms linking
seed coat pigmentation to shoot regeneration could be
expanded, possibly integrating flavonoid biosynthesis and
tissue culture responsiveness more.

• Response: The Results and Discussion section now includes
an expanded interpretation linking flavonoid metabolism
to cytokinin responsiveness.

• Conclusion: Consider sharpening the Conclusion to
emphasize the practical applications of the findings,
especially in the context of lettuce transformation systems.

• Response: The Conclusion emphasizes the practical
application of optimizing transformation efficiency in
lettuce.

• Including a visual summary (graphical abstract) could
further enhance impact.

• Response: A graphical abstract was considered but omitted
because Figures 1-3 fully summarize the experimental
results.

Reviewer FA [3]
• At the beginning of your abstract, you should write a

paragraph about the problem you want to solve.
• Response: The Abstract begins with a clear problem

statement: cultivar-dependent shoot regeneration efficiency.
• The abstract mentions statistical significance but does not

provide any details about how these were assessed or the
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significance level (eg, P value). Details on the statistical
analysis methods used (eg, “significant at P<.05”) should
be added.

• Response: Quantitative and statistical details (P<.05) have
been added to the Abstract.

• The Introduction contains well-documented data that are
widely known. Hormonal information has been extensively
reported and reviewed. Against this background, authors
have to point out how this work is different from the earlier
reported work; what are the innovative findings reported
here? A strong and convincing justification is required.

• Response: The Introduction has been rewritten to clarify
the originality and novelty of our study.

• The Methods section in its current form is not acceptable
because it requires more details, such as the latitude and
longitude of the culture area. Write a simple paragraph
describing the climate of the area and date of study.

• It is necessary to mention the active ingredient of
commercial chlorine bleach.

• KOH and HCl are used in the pH adjustment process.
• Response: These Methods have been expanded to include

climate information (humid subtropical, Cfa), bleach
composition (6% NaOCl, final 1.2%), and pH adjustment
(KOH/HCl).

• Tween-20 is used with disinfectants to reduce surface
tension, thus increasing the disinfectant’s effectiveness.

• Response: Tween-20 was mentioned by the reviewer but
was not used in our sterilization protocol. Surface
sterilization was performed using 70% ethanol and 20%
bleach without surfactants.

• It is necessary to mention the lighting intensity during the
incubation period of the cultures.

• Response: The light intensity during incubation was
approximately 300 µmol m ² s ¹ under cool white fluorescent
lamps.

• The statistical analysis mentions EZR software, but there
is no explanation of why this particular software was
chosen.

• Response: The rationale for using EZR software has been
provided, noting that the software is a free R-based
statistical platform suitable for general biological data
analysis.

• In the Discussion, authors have explained various
biochemical interactions and mechanisms that are widely
known and reported. Authors should give their own
reflections of the work. It is essential to include the
advantages and shortcomings of the work; what are the
limitations of this technology and its shortfalls? Authors’
own scrutiny of the data clarifications is decisive for the
impending research on this subject. This work is
field-oriented, the cost-benefit ratio is very significant, and
micropropagation will increase the cost, but this has not
been commented on in the text. Scale-up of the tissue culture
plant is not an easy task and would be challenging work.

• Response: The Discussion has been expanded with a new
section, “Limitations and Future Applications,” addressing
the scalability, cost, and practical applicability of our
method.

• Conclusion: What does this infer for lettuce production?
Need a little more work to show the significance of your
work.

• Response: The Conclusion has been revised to emphasize
the implications of large-scale lettuce transformation.

• References: It is advised to refer only to recent work and
not old citations.

• Response: The references have been updated to include
recent literature (2022‐2025).
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This is the authors’ response to peer review reports related to
“Machine Learning Ensemble Investigates Age in the
Transcriptomic Response to Spaceflight in Murine Mammary
Tissue: Observational Study.”

Live Review Round [1]

List of Major Comments
• The title of this paper [2] should be more specific with

respect to the source of mammary tissue: identify “mouse
mammary gland tissue” in the title or, perhaps, simply
“murine mammary tissue.”

• Response: We changed the title as suggested to “Machine
learning ensemble investigates age in the transcriptomic
response to spaceflight in murine mammary tissue:
observational study.”

• While the methodology is interesting and the findings
certainly warrant further study, this should be clearly
identified as formative research: there was no
preregistration of hypotheses and methods, and the findings
(list of key genes and of pathways differing according to
age) are just suggestive and not at all robust or convincing.
Accordingly, some detail about the experiences of the mice
and physiological values is beside the point, so we suggest
it is moved to a “Supplements” section along with more

specifics about machine learning parameters, etc, that could
help researchers attempting similar approaches.

• Response: We describe in the newly-added Strengths and
Limitations section of the manuscript that our in silico
findings need to be validated in vitro. We also make the
software (as a Jupyter notebook) available so that our
approach may be repurposed or reproduced.

• With respect to the OSD-511 dataset, the details of Rodent
Research Reference Mission 1 need revision, as it was
mentioned that there are 40 female BALB/cAnNTac mice,
while the total number of animals used was 43: 21 younger
mice and 22 older mice. Moreover, the 8 younger mice that
were kept in standard cages were exposed to different
conditions from the 7 older mice that were housed in flight
hardware.

• Response: We rectified the counts and created Table 1 for
clarity.

• In addition, it was mentioned that each group of
space-flown mice had corresponding control groups
(ground control), but it is not clear which basal controls
(10 mice euthanized 1 day post launch) are used to compare
which group. This is important to explain the single group
called “non-flight” that is mentioned later in the paragraph,
and indicate if these latter details from the original
experiment are not available to the authors.
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• Response: We added explanations to specify which mice
were used in which grouping.

• In the Discussion section, or as a separate Limitations
sections, consider explicitly pointing out that data of
experimental mice that were collected just once after 40
days in space and 2 days post return recovery provides only
cross-sectional data and does not capture changes in the
mice that could be evident while in space or longer after
return from space. Also, the description for Figure 1
mentions Figure 1E and F, which are not available in the
figure.

• Response: We added this and several others to a dedicated
section called “Strengths and Limitations” in the Discussion.

• The small sample size should be acknowledged, which
means the outcome models may not be able to generalize
well on unseen data in downstream tasks.

• Response: We describe how we augmented the data in the
Methods section. We also call out the paucity of data in the
Strengths and Limitations part of the Discussion.

Minor Comments
• The title could be enhanced to make it clear that this was

an experiment based on a model organism (mouse) and not
human.

• Response: We changed the title as suggested to “Machine
learning ensemble investigates age in the transcriptomic
response to spaceflight in murine mammary tissue:
observational study.”

• The reviewers acknowledge the availability of details that
enable the reproducibility of the study, such as publicly
accessible data sources and detailed description of data
handling and analysis procedures. However, the reviewers
wondered whether the source code used could be availed
for enhancing the reproducibility.

• Response: Per this suggestion, we made the code available
to the reader.

• The total number of mice stated that were used in the study
does not correspond with the total number used, based on
the breakdown of individual group numbers. Authors need
to cross-check the numbers to ensure that they tally with
the numbers used.Response: We rectified the counts and
created Table 1 for clarity.

• Clarify the composition of the control cohort, refer to those
mice in a consistent way, and discuss differences that were
found to exist between the subsets of controls.

• Response: We rectified the counts and created Table 1 for
clarity.

• In page 4, under the Data Transformation section, it is
stated that “four filtering methods were performed,” but
Figure 2B only represents three filters. Kindly clarify if the
fourth filtering method was used but not included in the
figure or whether there was a mistake in either the figure
or the text for the sake of consistency.

• Response: We updated Figure 2B to include four filter
icons.

• On page 6, the last paragraph, a linear regression model
was used to predict the weight of mice at euthanasia, but
the significance of this prediction was not discussed. The
significance should be discussed for a better understanding
of its applicability. Add a brief discussion of the significance
of the model, which may include a statistical test validation
such as P values and/or CIs.

• Response: We removed the linear regression model from
the ensemble.

• On page 15, under the Conclusion section, it is also
mentioned that “The dysregulation of ECM [extracellular
matrix] remodeling, cytoskeletal function, and stress
response pathways was observed in radiation-exposed
mice,” but radiation exposure was not the intervention
applied. Revise this statement to accurately reflect the
intervention applied in this study (spaceflight) and ensure
the conclusion is per the experimental conditions.

• Response: We updated the model and the subsequent
pathway results do not include extracellular matrix
remodeling.

• In the Discussion section, some results are repeated instead
of being analyzed in depth. Focus more on interpreting the
results, compare them with similar studies, and discuss
their significance.

• Response: We added a lot of content interpreting the results
in the Discussion section, along with comparing to similar
studies and discussing their relevance.

• Only accuracy is reported for model performance metrics.
Add other metrics, including area under the receiver
operating characteristic curve, sensitivity, specificity, and
F 1 -score, to enhance the assessment of the model’s
predictive ability.

• Response: We changed our model performance metric to
use the F1-score.

• Under the algorithms discussion, remove possessive
apostrophe from the “1950’s.”

• Response: We removed the possessive apostrophe.

• It may help to add a statement to make it explicit whether
ethics approval was necessary for the study. In addition, it
would add value in discussing ethical implications of
collecting the dataset used in the manuscript with reference
to any discussion in previous publications or from the
authors who collected the original data.

• Response: We added an entire section dedicated to ethics
approval.

Concerns with Figures and Tables
• Most figures have poor resolution, which makes them

difficult to understand or interpret. It would be helpful to
regenerate the figures with better resolution.

• Response: We increased the resolution of all our images.

• It would be helpful to add details to the captions to include
what’s represented in each panel and any elements of
statistics.

• Response: We added additional explanations to the captions
of all figures and tables.
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• Creating a table to present the various groups and their
characteristics, including ground control, would help
improve readability.

• Response: We created Table 1 for this purpose.

• Figure 1 lacks an adequate explanation of each panel,
which will clarify what they represent.

• Response: We added additional explanations to the caption
of Figure 1.

• Table 1 is not clear, making it difficult to read.
• Response: We made Table 1 more clear and legible.

• The top and left parts of Figure 7 are cropped, and it is
possible important information is omitted.Response: We
omitted Figure 7.

• The legend refers to plots by layout (left/right), duplicating
the role of (a)-(d) labels. Also, plot titles are not the most
prominent text and are not referenced in the text.

• Response: We removed the “left/right” language from the
caption and removed the plot titles from the figure.

• In Figure 4, the term “accuracy” is used without
clarification.

• Response: We replaced Figure 4 with Table 2. Also, we
replaced “accuracy” with “F1-score” as the performance
metric.

• Abbreviations used in Figures 2 and 3 are not explained.
• Response: We added explanations for all abbreviations and

created an abbreviation table at the end of the manuscript.

• The Figure 3 legend does not clearly describe the difference
between the left and right diagrams.

• Response: We removed “left/right” language from the
figure caption and replaced it with letters and colors to be
more clear.

• The manuscript refers to Table 1 subsections “e” and “f,”
which are not present. Some figures are also unclear and
not explanatory enough.

• Response: We added Figure 1E and F to Figure 1. We also
added more explanations to all of the figure and table
captions.

• Figure 5: Fonts are too small to read, and part of the legend
is cropped.

• Response: Figure 5 is now Figure 4 and has been updated
with larger fonts, and we removed the legend.

• In Figure 1, the caption states that the left plots represent
ground mice and the right plots represent space mice, which
is not reflected in the figure.

• Response: We removed “left” and “right” language from
the figure caption.

• On page 4, the principal components analysis statement
interpreting Figure 1A and D is misleading. The statement
suggests that both Figure 1A and D show principal
components analysis for spaceflight, whereas Figure 1A
only represents ground mice.

• Response: We updated the figure caption and interpretation
to properly reflect the principal components analysis plots.

• The text for Figure 1 describes Figure 1E and F, but these
panels are not present.

• Response: We added Figure 1E and F to Figure 1.

Additional Comments
• Consider revising the title and abstract to identify that the

study was conducted with data collected in a model
organism or murine model.

• Response: We changed the title as suggested to “Machine
learning ensemble investigates age in the transcriptomic
response to spaceflight in murine mammary tissue:
observational study.”

• The second page, second sentence of the first paragraph:
“Female astronauts in particular have an increased risk
of breast cancer due to exposure to galactic cosmic
radiation (7).” Please revise the reference, as Kumar et al
[ 3 ] did not investigate or conclude the mentioned data.

• Response: We modified the text further to be more
inclusive in terms of breast cancer risk from ionizing
radiation, including cosmic radiation.

• On the second page, in the last sentence of the first
paragraph, “Female astronauts...this increased
vulnerability.” Please provide a reference for the mentioned
data.

• Response: It is a summary statement of the previous
statements encompassing 20 references.

• The second page, second paragraph: “Machine learning
(ML) has been leveraged but to a much lesser extent (15).”
Please revise the reference as Larrañaga et al [4], as ML’s
role in bioinformatics has been widely expanded since 2006.

• Response: We updated the sentence and changed the
reference to a more recent one.

• Page 6, second paragraph: It was mentioned that “The
support vector machine was created by Hava Siegelmann
and Vladimir Vapnik,” and there is a reference to Cortes
and Vapnik [5], while this work [6] was published in 2001.

• Response: We are not using support vector clustering in
our method.

• Page 11, pathway enrichment analysis: Please identify the
abbreviation “KEGG” as “Kyoto Encyclopedia of Genes
and Genomes.”

• Response: We expanded the acronym at its first use. We
also created a table of acronyms at the end of the
manuscript.

• Page 11, pathway enrichment analysis: Please identify the
abbreviation “FDR” as “False Discovery Rate.”

• Response: We expanded the acronym on first use. We also
created a table of acronyms at the end of the manuscript.

Concluding Remarks
• In the Data Transformation section, groups were introduced

for the first time in the manuscript (FLT vs GC and YNG
vs OLD); these categories are defined later, but it would
be good to spell out the names the first time they are
mentioned. That’s true for any other acronym used.
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• Response: We added an explanation for those and all other
acronyms on first mention. We also created a table at the
end of the manuscript that defines each acronym.

• The article did not introduce a Limitation section. It is
helpful to the reader to emphasize the limitations of the
methods.

• Response: We added a Strengths and Limitations section
to the Discussion.
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