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Live PREreview [1]

Summary
The study [2] examines the performance of 5
RNA-folding engines for predicting complex viral
pseudoknotted RNA structures. This research fills a
critical gap in the field by comparing the efficiency
of minimal free energy (MFE) and maximum expected
accuracy (MEA) using a curated dataset of 26 viral
RNA sequences with known secondary structures.
Contrary to prevailing assumptions favoring MEA
models, their findings reveal that pKiss, an
MFE-folding engine, outperforms Vsfold 5 in terms
of the sensitivity, positive predictive value (PPV), and
F1-score, while laying emphasis on the importance
of the PPV and sensitivity parameters in
understanding and determining the superior accuracy
of pKiss to predict correct base pairs and minimize
incorrect predictions. The authors also point out that
the engine still needed additional data to achieve high
accuracy as well as a better understanding of
thermodynamics at the intracellular level.

The statistical analyses used to evaluate the results
were 2-way ANOVA and Tukey multiple comparisons
test, which provided robust insights into the
performance differences among the tested engines.
The research integrates bioinformatics with statistics
and advanced data science methodologies to promote
our understanding of computational RNA biology.
The study provides important insights into the relative
advantages and disadvantages of both approaches in
predicting pseudoknotted RNA structures by
contrasting MFE models and MEA models. It also
highlights avenues for future research to focus on the
development of more sophisticated energy models
and MFE engines, like pKiss, to enhance prediction
capabilities, especially in the context of viral
replication and gene regulation, which may lead to
a better understanding of the functional roles of
pseudoknotted RNA structures. Overall, this research
contributes significantly to the field of computational
and molecular biology.

Below, we list major and minor concerns that were
discussed by participants of the live review, and where
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possible, we provide suggestions on how to address
those issues.

List of Major Concerns and Feedback
It would be helpful to provide more context on why
percent error was chosen as the primary metric for
evaluating different engines, considering alternatives
like mean absolute error (MAE) and mean squared
error (MSE) could enhance the analysis. For instance,
MAE is robust against outliers, making it a valuable
metric, especially when outlier removal is part of the
process. Although MAE is less sensitive to extreme
values, it can offer a useful qualitative check on the
models. On the other hand, the mean MSE’s sensitivity
to outliers can be advantageous when the spread of
the forecast is important. Including these metrics
could provide a more comprehensive evaluation.

Response: It should be noted that the percent error (%) in this
case is in fact analogous to the MAE (as described in equation
1) and is represented as such in Figure 4A. Hence, the two are
used interchangeably, which is clarified on pages 8 and 10 and
within the supplementary materials on page 23. The reviewer’s
suggestion to use MSE, in addition to MAE was heeded, and
the following values for MSE were calculated and exhibited in
the newly generated Figure 4B. The utility of MSE and MAE
was expounded on in the Discussion section on page 15. It
should be noted that a prerequisite for applying MSE is that all
data be normally distributed, which was tested for and
confirmed.

It should also be noted that MSE (or root mean square error)
equals the residuals’ SD, calculating the variance between the
observed and expected values. This makes it unnecessary to
calculate and display the SD of the MSE within Figure 4B.

The authors have conducted a comprehensive and
insightful study, revealing important differences in
prediction accuracy between Vsfold 5 and pKiss. One
area that could further enhance the manuscript is the
exploration of how auxiliary parameters (eg, Mg2+
binding, dangling end options, H-type penalties) are
managed across the various RNA-folding engines
utilized. For example, Vsfold 5, although being an
MEA model, may encounter challenges if its handling
of Mg2+ binding or dangling ends significantly
diverges from what is optimal for the studied RNAs.
The authors’observation in section 3.1 that “the low
percent error exhibited by pKiss could be the result
of the pseudoknot ‘enforce’ constraint, but it is more
likely that this outcome was multivariable, equating
to the Turner energy model used, and the sensitive
auxiliary parameters enforced by the program” is
particularly insightful. This highlights the complexity
of RNA structure prediction algorithms. To build on
these findings, a structured comparative analysis of
parameter handling across different software tools
could be highly beneficial. This analysis would not
only clarify why certain engines performed better
than others but also help in identifying best practices
or potential biases in prediction methodologies. Such

an addition would significantly strengthen the study’s
conclusions and provide valuable guidance for future
research in RNA structure prediction.

Response: This major criticism has been addressed. Though not
all auxiliary parameters like Mg2+ binding and dangling end
options were explored (given that the amount of data this would
generate could warrant an entirely new paper/manuscript)
several auxiliary parameters were modified and compared to
the original percent error (%)/MAE of pKiss (Figure 4A).

These include overall pKiss function, altering the “enforce”
setting to the “MFE” setting, which computes the single
energetically best secondary structure (column 2, S2.1), altering
the strategy from “pKiss C” (slow, low memory, but thorough)
to “pKiss A” (fast but sloppy; column 3, S2.2), altering the
exclusion of lonely base pairs to the inclusion of lonely base
pairs (column 4, S2.8), altering the H-type penalty from 9 to 18
(column 5 S2.3), and altering the K-type penalty from 12 to 24
(column 5, S2.4). pKiss was chosen to explore these parameters,
given that it is the most accurate out of all other folding
software.

Testing these auxiliary parameters, displaying them in graphical
format, and expounding upon them in the Discussion section
of this report (page 15) helps eliminate potential biases and
shows how sensitive these functions can be and why certain
engines are better than others.

To build on these findings, a structured comparative
analysis of parameter handling across different
software tools could be highly beneficial. This
analysis would not only clarify why certain engines
performed better than others but also help in
identifying best practices or potential biases in
prediction methodologies. Such an addition would
significantly strengthen the study’s conclusions and
provide valuable guidance for future research in RNA
structure prediction.

In section 3.1 of the manuscript, no significant
difference in percent error was identified. However,
it does not specify the statistical test employed nor
the method used for adjusting P values, which are
essential details for validating the results.
Additionally, the term “Vij” is introduced early in
the manuscript but is not contextualized until page
13. Providing this context earlier would enhance the
reader’s understanding.

Response: Both before and after the PREreview criticisms were
considered and implemented, the statistical tests employed in
this paper were expounded on. Statistical analyses used
throughout the paper (2-way ANOVA testing, outlier
identification, normality, lognormality tests, etc) were
summarized at the end of the Materials and Methods section
(page 10). Moreover, any specific statistical test used for any
dataset/figure was discussed in depth within the figure
descriptions and, if relevant to the reader, discussed even more
in depth within the Discussion section of the manuscript.

The term V(i,j) (the real symmetric contact matrix) was
contextualized earlier within the paper, as per the reviewers’
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suggestion (pages 2 and 3), and the math behind its utility is
explained in greater depth.

It would be beneficial if “false positive” and “false
negative” were more clearly defined, particularly in
the context of mRNA detection. To improve clarity,
the authors might consider specifying that sensitivity
is the appropriate measure for detecting mRNA
among known positives, while specificity is the
appropriate measure for detecting mRNA among
known negatives, where the probability of false
positives is 1 – specificity. Additionally, using the
Youden index (J), which is defined as sensitivity +
specificity – 1, could provide a helpful summary of
detection accuracy. This index ranges from –1
(indicating 100% incorrect detection) to 1 (indicating
100% correct detection), offering a clear metric for
assessing performance [3].

Response: False positives (pairings that do not fall under
Matthews’[4] parameters) and false negatives (base pairs missed
by the prediction software) were more clearly defined on page
8 of the manuscript in the context of all metrics used and in the
context of MAE/percent error (%). They were also discussed
in greater depth on page 9 and on page 16, in the context of
Youden’s index. The specificity and sensitivity used to detect
known negatives and known positives, respectively, are further
discussed in greater depth within sections 2.4, 3.2, 3.3, and 4.2
of the original manuscript.

The reviewers’ suggestion to use the Youden index (J; a more
sensitive metric than F1 scoring) was implemented. The equation
for the Youden index (J) was provided on page 9, with figures
for J values of the 26 experimentally derived pseudoknotted
models from each of the 5 folding software displayed on page
13 (including raw values and normalized values), the results of
which were then expounded on in the Discussion section.

While J is most often represented in a receiver operating
characteristic curve, the authors are displaying the mean (SD)
of J values across folding software for the sake of clarity and
visual representation, given that 130 receiver operating
characteristic curves would prove visually confusing. It should
also be noted that data were normalized and put into graphical
format (Figure 6B) again for visual clarification. This eliminates
negative values for J (as negative values for J are not defined).

Providing the link to the dataset will allow better
compliance with open science practices. Please add
the link to the dataset as it appears to be missing from
the reviewed version of the manuscript. When sharing
the dataset, it would be important to also include the
associated metadata and appropriate documentation
that matches the methods described in the manuscript.
For guidelines on how to share data so that it’s as
reusable as it can be, authors may refer to the
Findability, Accessibility, Interoperability, and Reuse
(FAIR) principles of data sharing [5].

Response: The link to both the dataset, the RNA pseudoknot
folding software web servers, and the manner in which each
was implemented to said dataset have been provided, complying

with open science practices. They can be located within the
supplemental materials, the DOI and URL of which can be
found on page 17 of the original manuscript (DOI:
10.17605/OSF.IO/7QVKN [6]). They are located within the
Open Science Framework an open-source cloud-based project
management platform (for ease of access). The FAIR Principles
of Data Sharing was also broached, referenced on page 4 of the
manuscript.

Figure 5B displays the PPV as three distinct blocks
rather than continuous values, with varying sensitivity
within these blocks. This nonrandom binning of PPV
suggests the need for further investigation to
understand the underlying causes.

Response: This abnormal trend is accounted for within the
manuscript and expounded upon within the Discussion section
(page 12, last paragraph). It is explained that, while most MFE
folding engines tend to have lower PPVs than sensitivity values
(due to thermodynamics imposed by MFE algorithms
overshooting the number of canonical base pairings), pKiss and
NUPACK do not follow this trend. This is because updated
software such as this implements a more accurate assessment
of the thermodynamic properties of the structure, removing
unwanted pairs and improving overall performance [7].

In the Discussion section, the authors stated “We
have provided evidence suggesting that MEA software
is not always the optimal method of topological
prediction when applied to short viral pseudoknotted
RNA.” This is a significant claim and would benefit
greatly from specific references to support the
evidence provided in the study. Citing the relevant
figures and results that support this claim would
significantly enhance comprehension and readability.
For example, “As demonstrated in Figure 4, the MEA
software Vsfold 5 exhibited higher percent errors in
predicting knotted base pairs compared to MFE
software like pKiss.” Additionally, referencing
previous studies that have reported similar findings
or that discuss the limitations of MEA methods in
RNA structure prediction in the Discussion section
would strengthen the credibility of the authors’claims
by showing that similar limitations have been
observed by other researchers. This helps readers
understand that the study is building upon existing
knowledge. For instance, “Previous studies have also
highlighted the limitations of MEA methods in RNA
folding predictions, particularly for pseudoknotted
structures (in-text citations).”

Response: The authors recognize this as the most valuable
criticism the reviewers have made and have addressed it
accordingly. The length of the Discussion section was increased
from 389 words to 1235 words, including a more in-depth
analysis of the results and statistical significance of said results,
as it applies to MEA software being suboptimal (at times) when
compared to its MFE counterparts. Nine different references to
in-text figures or supplementary materials were added; relevant
literature was additionally cited, and previous studies were
discussed and compared to the results of the paper.
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However, it should also be noted that previous studies
highlighting the limitations of MEA methods when applied to
RNA folding have not been cited, given that this is a novel
approach to exploring ab initio RNA prediction algorithms.
Though RNA prediction algorithms have been explored in great
depth in previous literature, none (to the author’s knowledge)
have compared MFE and MEA prediction software against one
another, and none have explored this software when applied to
short-stranded (20-150nt) viral pseudoknotted RNAs.

List of Minor Concerns and Feedback
Overall, the reviewers really appreciated how clearly
the figures and results were presented. Below are
some minor suggested improvements [7].

In the Abstract section: Please identify the
abbreviation PPV as positive predictive value.

Response: The acronym for positive predictive value (PPV)
was defined in the abstract as per the editor’s suggestion (page
1).

Page 3, first paragraph after Figure 1: Definitions
of pseudoknot should be referenced.

Response: On page 3, an official definition for a pseudoknot
was referenced by Brierley et al [8]. Moreover, two more
definitions were posited by the authors on the very same page.

Page 3, second paragraph after Figure 1: Please
identify the NMR abbreviation as nuclear magnetic
resonance.

Response: Nuclear magnetic resonance (NMR) was abbreviated,
and the acronym was defined. Please note that, given the new
additions to the manuscript, this clarification is now found on
page 4 of the manuscript, rather than page 3.

Page 7: The manuscript acknowledges the skewness
in the data and provides a rationale for its presence.
It’s noted that this skewness impacts the training and
testing phases, often contributing to false positives
and false negatives. It would be beneficial if the
authors could elaborate on how they addressed data
imbalance, particularly in relation to reducing false
positives and false negatives. This additional detail
would enhance the understanding of the methods used
to manage data skewness and improve model
performance.

Response: The reviewer is correct in stating that the manuscript
acknowledges the skewness in data and that it provides a
rationale for its presence on page 7:

“This skewness (regarding the class of RNA) is intentional, and
true to nature, given that hairpin-type pseudoknots (H-type) are
more common by far [8].”

However, the reviewer is incorrect in saying that this skewness
impacts the training and testing phases (which were not
discussed within the manuscript) and is incorrect in saying that

it contributes to false positives and false negatives (which it
does not). This would be the case for deep learning algorithms
and folding software that is malleable, in the sense that it can
be trained and altered when inserting varying inputs. However,
the folding software provided by each of the 5 web servers do
not harbor any deep learning algorithm/training/machine
learning, unlike other software such as ATTfold (which is
referenced in the paper, page 16).

Page 8, second paragraph: “Mathews et al. 2019” should be
corrected to “Mathews, 2019” [4].

Response: “Mathews et al 2019” was indeed changed to
“Mathews 2019” [4], as per the editors’ suggestion, on page 8
of the manuscript.

Page 8, equation 1: Add a “%” next to *100, giving
the output of x%.

The amendment was made, and equation 1 now has a % sign
next to the 100 (100%).

Page 10, Figure 4: In the title, “accurcy” should be
corrected to “accuracy.”

Response: In Figure 4, the typo “accuracy” was indeed
corrected. Please note that, given new additions to the
manuscript, this amendment can now be found on page 11,
while the amendment itself is located in Figure 4A.

Page 10, Figure 4: The bar of the SD of Vienna
(knotted) is not presented.

Response: There being no SD bar present in the Vienna
(knotted) control variable is actually correct. As stated on page
5 of the paper (as well as other instances within the manuscript),
the Vienna RNAfold engine does not compute for pseudoknots,
which is why it was implemented as a negative control. Its
inability to compute pseudoknots axiomatically means that the
percent error (%) for pseudoknot generation will always be
100%, leading to no SD whatsoever.

Page 10, Figure 4: The bars of the SD seem to be
widely large, indicating significant variability in the
results, so a test of the normality of data distribution
should be performed before comparisons. This is also
observed for the kinefold results in Figures 5 and 6.

Response: Tests for normality (gaussian) and lognormality were
conducted on all relevant figures:

• Figure 4 (A-B): Kolmogorov-Smirnov tests
• Figure 5: Shapiro-Wilk test
• Figure 6 (A-B): Shapiro-Wilk test and

Kolmogorov-Smirnov tests
• Figure 7: Kolmogorov-Smirnov test

Page 12, Figure 6B: The color bar on the heat maps
is missing.

Response: Color bar on the heat map (now found on page 14
of the manuscript) was added.
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