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Abstract

Background: People with type 1 diabetes (T1D) depend on external insulin to regulate their blood glucose level (BGL) within
the normoglycemic range between 4.0 to 7.0 mmol/L. Patients with T1D routinely conduct self-monitoring of blood glucose
through finger pricks before insulin injections. An artificial pancreas is an innovative device that mimics the function of a healthy
pancreas. Despite its recent advancement, the control algorithms used in an artificial pancreas are still lagging in delivering the
proper insulin dosage to patients with T1D. Previous researchers attempted to improve the interrelation between parameters and
variables in the original Hovorka equations model, later known as the improved Hovorka equations model; however, the improved
equations model has not been tested in terms of its usability to regulate and control the BGL in a safe range for 2 or more people
with T1D.

Objective: This study aimed to simulate the improved Hovorka equations model using actual patients’ data via MATLAB
programming coupled with enhanced model-based predicted control and determine the optimum bolus insulin. The study then
compares the performance results obtained from in-silico and clinical works.

Methods: Data from 3 patients were collected from clinic 1—Clinical Training Centre, Universiti Teknologi MARA Hospital,
Sungai Buloh, Selangor—upon getting approval from the Universiti Teknologi MARA Ethics Committee. The inclusion criteria
for participation were, namely having T1D, age 11-14 years, and highly dependent on insulin injection with four or more finger
pricks or self-monitoring of blood glucose for BGL measurements per day. The patients with T1D typically received meals three
times per day: breakfast, lunch, and dinner. A closed-loop algorithm (enhanced model-based predicted control) was used for the
in-silico test, whereas an open-loop therapy was used for the clinical validation. As for the data analysis of patients, P values
from a multiple linear regression were used to model the relationship between meal, insulin, and BGL.

Results: The optimum bolus insulins for patient 1 were 83.33, 33.33, and 16.67 mU/min; for patient 2 were 66.67, 50.01, and
33.33 mU/min; and for patient 3 were 100.02, 83.33, and 66.67 mU/min for breakfast, lunch, and dinner, respectively. As for the
in-silico works, the percentages of time that the BGL was on target for patients 1, 2, and 3 were 79.59%, 87.76%, and 71.43%,
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respectively, as compared to the clinical works with <50%. A small P value (P<.001) indicated that the variables were significant.
However, when compared to the BGL profile, both profiles were not comparable in simulating the BGL for patients with T1D.

Conclusions: The in-silico work was not comparable to the clinical work in simulating the BGL for patients with T1D due to
the different methodologies used and the insufficient information that was reported to reproduce the calculation of the optimal
bolus insulin.

(JMIRx Bio 2024;2:e43662) doi: 10.2196/43662
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Introduction

Diabetes is a chronic disease that is characterized by high blood
glucose levels (BGLs). It occurs when beta cells in the pancreas
produce insufficient insulin or cells are unable to use insulin
effectively. Insulin is crucial in blood glucose regulations by
promoting glucose uptake, consequently lowering the BGL [1],
which should be regulated within the normoglycemic range
between 4.0 and 7.0 mmol/L [2]. Maintaining BGLs in a safe
range can help prevent long-term complications related to
hyperglycemia (high BGL) and hypoglycemia (low BGL). A
lack of insulin production in patients with type 1 diabetes (T1D)
thus disrupts blood glucose regulation. T1D commonly occurs
in children and adolescents. The incidence of T1D is more
prevalent in Northern Europe than in the rest of the world. The
International Diabetes Federation reported 977 cases of T1D in
Malaysian children ages 0 to 19 years in 2019 [3]. People with
T1D must monitor their BGL via finger pricks and either
perform self-monitoring of blood glucose (SMBG) or take
multiple daily injections (MDI) of insulin to regulate their BGL.

The current practice for blood glucose management is invasive,
which causes distress to patients. Thus, the introduction of an
artificial pancreas device (APD), also known as a closed-loop
system, has improved the quality of life for people with T1D
for the last few decades. An APD has the potential to impact
millions of people by helping regulate BGLs. Additionally,
being able to estimate this (even a low-end estimate) with
modeling work reduces material costs, time, and patient risk.
Despite the recent advancements in APDs, the control algorithms
used are still lagging in delivering the proper insulin dosage to
people with T1D. Previous works had modified some equations
in the subsections of the Hovorka model [4], which is also
known as the improved Hovorka equations model, in regulating
the BGL within a normoglycemic range (4.0-7.0 mmol/L) [5,6].
However, the improved Hovorka equations model has not yet
been tested in terms of its usability to regulate and control the
BGLs in a safe range for two or more people with T1D. This
study aims to simulate the improved Hovorka equations model
using actual patients’data via MATLAB programming (in-silico
works) coupled with enhanced model-based predicted control
(eMPC) and compare its performances with clinical works. This
study is a continuation of preliminary in-silico works from the
previous studies [7-9] carried out on a single patient with T1D
using the improved Hovorka equations model.

Methods

Ethics Approval on Data Collection for Clinical Works
Ethical approval for this study (REC/435/19) was granted by
the Universiti Teknologi MARA (UiTM) Ethics Committee
before data collection commenced (reference letter 600-TNCPI
(5/1/6) dated 29 October 2019). The data collection and patients’
information required in this study were obtained from clinic
1—Clinical Training Centre, UiTM Medical Specialist Centre,
UiTM Hospital, Sungai Buloh, Selangor. Information sheets
were given, and formal consent for participation from the parents
or legal guardians of patients with T1D was obtained since the
patients were all younger than 18 years. During the appointment,
parents or guardians of participants (ie, patients with T1D) were
allowed to ask questions before signing the consent form. The
participants could withdraw from the study at any time without
penalty. Participants’ details, such as names or other personal
identifiers, remain confidential in the data used by the
researchers.

A total of 3 patients with T1D were recruited following informed
consent. The inclusion criteria of patients were patients with
T1D; age 11-14 years; and highly dependent on insulin injection
with four or more finger pricks or SMBG for BGL
measurements per day, MDI of insulin, and a well-documented
bolus insulin requirement. The exclusion criteria were patients
with T1D with evidence of hypoglycemia unawareness; known
or suspected allergy to insulin; or established neuropathy,
nephropathy, and retinopathy. Patients with T1D attended the
clinic every 3 months and required blood taking as routine
follow-up care. The amount of blood taken by the pediatrician
was 5 mL each for fasting glucose and fasting insulin and was
taken once. The additional data required included the patient’s
name, age, gender, race, body weight, BMI, type and amounts
of meals consumed (specifically carbohydrates), meal time and
duration, T1D history (years diagnosed with T1D), fasting
plasma glucose level, fasting plasma insulin level, bolus insulin
administered, and other relevant information. The patients with
T1D typically received meals three times per day: breakfast,
lunch, and dinner. The patients’ data were termed clinical data
(clinical work) throughout the study. Table 1 summarizes the
demographic profiles of the patients with T1D, including gender,
age, and body weight.

Table 2 provides a 24-hour meal summary for all patients that
includes meal time and duration, and amounts of meals
consumed (in grams of carbohydrates).

JMIRx Bio 2024 | vol. 2 | e43662 | p. 2https://bio.jmirx.org/2024/1/e43662
(page number not for citation purposes)

Som et alJMIRx Bio

XSL•FO
RenderX

http://dx.doi.org/10.2196/43662
http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Demographic profiles of patients with type 1 diabetes.

Body weight (kg)Age (years) in 2020GenderPatient

27.013Male1

26.311Female2

49.914Male3

Table 2. Meal summaries for patients 1-3 over 24 hours.

Total carbohydrates (g)Meal duration (min)Mealtime (hours passed since simulation started at 5 AM)Meal

Patient 1

36307:30 AM (2.5 h)Breakfast

36301:30 PM (8.5 h)Lunch

47307 PM (14 h)Dinner

Patient 2

30106 AM (1 h)Breakfast

41201 PM (8 h)Lunch

49208 PM (15 h)Dinner

Patient 3

67308:15 AM (3.5 h)Breakfast

124103 PM (10 h)Lunch

47158:45 PM (15.5 h)Dinner

Mathematical Model for In-Silico Works
The improved Hovorka equations [5,7] based on the Hovorka
model [4] are specifically designed for people with T1D. The
diagram of the improved Hovorka equations model is illustrated
in Figure 1 [7]. The model has two inputs: meal disturbances
and bolus insulin. It comprises three subsystems: the glucose
subsystem, insulin subsystem, and insulin action subsystem.
Equations 1 and 2 are used for the glucose subsystem:

where Q1 (mmol) is the mass of glucose in an accessible
compartment; Q2 (mmol) is the mass of glucose in a
nonaccessible compartment; kw1, kw11, kw2, kw22, kw3, and kw33

(min–1) are activation rates; k12 (min–1) is the transfer rate; EGP0

is the endogenous glucose production (EGP) extrapolated to
zero insulin concentration; VG (L/kg) is the glucose distribution
volume; G (mmol/L) is the glucose concentration; x1, x2, and
x3 are the effects of insulin on glucose transport and distribution,

glucose disposal, and EGP, respectively; F01
c (mmol min–1 kg–1)

is the total non–insulin-dependent glucose flux; and FR

(mmol/min) is the renal glucose clearance.

When a meal is consumed, the carbohydrate content will be
broken down into glucose before being converted into energy,
thus increasing the BGL. Equation 5 was used for observing
the effect of meal disturbances on BGLs.

where DG is the amount of carbohydrates digested (mmol), AG

is the carbohydrate availability, and tmax,G is the
time-to-maximum of carbohydrate absorption (min).

Equations 6-8 show the insulin subsystem. Insulin is
administered subcutaneously. This method is less invasive than
the intravenous method, in which insulin is injected directly
into the bloodstream.

The insulin absorption rate in the bloodstream is given in
equation 9.
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where S1 and S2 (mU) are the insulin sensitivity in accessible
and nonaccessible compartments, respectively; u(t) (mU/min)
is the insulin infusion rate; tmax,I (min) is the time-to-maximum
of insulin absorption; UI (mU/min) is the insulin absorption

rate; VI (L/kg) is the insulin distribution volume; and ke (min–1)
is the fractional elimination rate.

The insulin action subsystem is shown in equations 10-12. The
insulin-glucose interaction can be observed in this subsystem.

The constants and parameters involved in the equations are
shown in Tables 3 and 4, respectively.

Figure 1. Schematic diagram of the improved Hovorka equations model.

Table 3. Constant values of the improved Hovorka equations model [7,10].

Value and unitConstantSymbol

0.066 min–1Transfer rate from nonaccessible to accessible compartmentk12

0.006 min–1Deactivation rate of glucoseka1

0.06 min–1Deactivation rate of glucoseka2

0.03 min–1Deactivation rate of glucoseka3

50.1 min–1Activation rate of glucosekw1

–10 min–1Activation rate of glucosekw11

50.1 min–1Activation rate of glucosekw2

–0.01 min–1Activation rate of glucosekw22

50.1 min–1Activation rate of glucosekw3

–0.01 min–1Activation rate of glucosekw33

0.138 min–1Insulin elimination from plasmake

0.12 Lkg–1Insulin distribution volumeVI

0.16 Lkg–1Glucose distribution volumeVG

0.8 (unitless)Carbohydrate bioavailabilityAG

40 minTime-to-maximum of carbohydrate absorptiontmax,G
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Table 4. Parameter values of the improved Hovorka equations model [7,10].

Value and unitParameterSymbol

0.0161 mmol kg–1 min–1Endogenous glucose production extrapolated to zero insulin concentrationEGP0

0.0097 mmol kg–1 min–1Non–insulin-dependent glucose fluxF01

55 minTime-to-maximum of absorption of subcutaneously injected short-acting insulintmax,I

Meals and Insulin Requirement
The in-silico work on the meal disturbances was based on the
patients’ daily meal intake. Table 5 shows an example of the
amount of daily meal intake, specifically carbohydrates,
suggested for 13-year-old male patients. The suggested meal

intake is based on the total daily calorie requirement, which
varies according to age and gender (refer to Table 6). It consists
of breakfast, lunch, and dinner, which are adopted into the
in-silico work using the improved Hovorka equations model.
Generally, 50% of the calorie intake comes from carbohydrates
[11].

Table 5. Example of amount of carbohydrate (CHO) intake for a 13-year-old male patient.a

CHO (mmol)CHO (mol)CHO (g)TimeMeal

20682.068606 AMBreakfast

31023.1029012 PMLunch

31023.102907 PMDinner

82728.272240—bTotal

aSource: patient with type 1 diabetes at clinic 1—Clinical Training Centre, Universiti Teknologi MARA Medical Specialist Centre, Sungai Buloh.
bNot applicable.

Table 6. Daily energy (calorie) requirement by weight for children and adolescents [12].

Energy (kcal/kg/day)Age

≥1080-6 months

≥987-12 months

1021-3 years

904-6 years

707-10 years

Male: 55; female: 4711-14 years

Male: 45; female: 4015-18 years

The calculations of carbohydrate intake and insulin requirement
can be further explained in the following example.

For a 13-year-old male patient with T1D and a body weight of
36 kg, the daily energy (calorie) requirement by weight based
on Table 6 for male patients ages 11-14 years can be calculated
as:

Referring to the previous calculation, a patient with a body
weight of 36 kg required approximately 240 grams of

carbohydrates. The bolus (exogenous) insulin required per day
can be calculated based on this value. If excess insulin is infused,
patients may experience hypoglycemia (low BGL) [13].
Generally, 1 unit of rapid-acting insulin can cover 10-15 grams
of carbohydrates [14]. However, this range can vary from 6 to
30 grams depending on the individual’s sensitivity to insulin,
and insulin sensitivity for an individual may vary for a different
period [14]. The total daily dose (TDD) of insulin can be
calculated based on the insulin-to-carbohydrate ratio used, which
is 1:15, as shown in equation 13.

TDD = Total amount of CHO intake (13)

÷ 15 g of CHO disposed of by 1 unit of insulin

Therefore,

TDD = 240 g CHO ÷ 15 g of CHO disposed of by 1 unit of
insulin

TDD = 16 units of rapid-acting insulin
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The TDD of insulin required to cover 240 grams of carbohydrate
intake is 16 units based on the above calculation. In addition,
a few parameters related to the patient’s body weight are being
considered, including VI, VG, EGP0, and F01 as seen in Tables
3 and 4. Another calculation example is shown below.

For patient 1, with a body weight of 27 kg, the following
parameter values were used:

The same equations were applied to patients 2 and 3 with a body
weight of 26.3 kg and 49.9 kg, respectively.

Consequently, all simulated data via in-silico works for the 3
patients with T1D were collected and plotted to produce profiles
of BGL versus time for each patient. Upon completion of data
collection and construction of sufficient BGL versus time
profiles for both clinical and in-silico works, these two results
were analyzed and compared for any similarities or differences.

Enhanced Model Predictive Control
The eMPC used in this study is an extension of MPC, which
uses a mathematical model of a system to predict its future

behavior over a certain period. The prediction was then used to
determine the optimal control to achieve the desired objective.
To control the BGL in patients with T1D, eMPC was integrated
into the improved Hovorka equations model meant for patients
with T1D to predict BGLs in response to different insulin
dosages and other inputs, thus optimizing the insulin dosing in
real time. The model considers factors that influence the
outcome of the BGL profile such as the current BGL, amount
of carbohydrates consumed, and time and duration of meals and
insulin. The eMPC algorithm uses these predictions to calculate
the optimal insulin dosage so patients can achieve a desired
BGL target range.

Figure 2 [15] illustrates the general concept of MPC. The
prediction horizon, P, would be the outcome of the BGL based
on the previous inputs, u, insulin infusion rate, and meal
disturbances. Constraints were imposed such that the target
range for BGL, G(t), was within the normoglycemic range of
4.0 to 7.0 mmol/L. The set point is set to 5 mmol/L. The insulin
infusion rate, u(t), was between 0 to 35 U/hr based on the current
insulin pump specification [16]. The control algorithm predicted
the BGL output to be closer to the set point. The eMPC is prone
to deliver more insulin to counter the hyperglycemia event. The
controller is also able to shut down insulin pump infusion to
minimize the occurrence of hypoglycemia.

Figure 2. General concept of model predictive control.

Initial values for S1, S2, x1, x2, and x3 were set at zero since the
insulin had not been injected into the patient’s body, and the
insulin being administered, which caused glucose
transport/distribution, glucose disposal, and EGP, had not yet
occurred. The bolus insulin for each meal was obtained on a
trial-and-error basis to minimize the BGL to the normal range
while avoiding hypoglycemia (<4.0 mmol/L). Since the blood
glucose (tmax,G=40 min) reached the bloodstream sooner than

the insulin (tmax,I=55 min), the bolus insulin was administered
30 minutes before a meal due to the time lag for insulin to
penetrate the skin and take effect. Figures 3 and 4 show a part
of the control system algorithm for glucose, G(i), and bolus
insulin, u(i). When the BGL falls below the range, the insulin
pump stops delivering insulin. In contrast, the insulin is
continuously delivered when the BGL is above 4.0 mmol/L.
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Figure 3. Part of the control system algorithm: glucose.

Figure 4. Part of the control system algorithm: bolus insulin.

The in-silico work of BGLs against time was conducted, and
the results were compared to the clinical work. The comparison
focused on assessing how well the in-silico model performed
in controlling BGLs. This evaluation helps determine the
accuracy and effectiveness of the in-silico model in mimicking
real-world BGL dynamics.

Data Analysis of Patients
Previously, the BGL profiles for both works were created. The
BGL profiles in the clinical work were done manually by
inserting related data and plotting the BGL profiles using
Microsoft Excel 2016. Conversely, the BGL profiles in the silico
work were generated using MATLAB R2015a (MathWorks).
From there, the pattern of blood glucose profiles was observed
and identified, such as the time of day when BGLs tend to be
the highest or lowest, the frequency of hypoglycemic and
hyperglycemic events, and the variability of BGLs. The BGL
profiles were used to evaluate the patients’ glycemic control
over the selected time frame by calculating the average BGL
and the percentage of time spent in different glycemic ranges,
such as hypoglycemia, normoglycemia, and hyperglycemia,
among other things.

Thus, Microsoft Excel 2016 was used to facilitate the data
analysis work. Data such as the amounts of meals (grams of
carbohydrates), mealtime and duration, and amount of plasma
insulin and plasma glucose were used. A regression analysis
was selected, which is a statistical method generally used to

analyze the relationship between two or more variables. A
multiple linear regression (MLR) is a type of regression analysis
that is done to analyze the relationship between two or more
independent variables and a dependent variable. In this case,
the two independent variables were the amounts of meals
consumed and insulin administered, while the dependent
variable was the predicted BGL. The following steps were
performed for the MLR.

The first step was to enter the data into the Excel spreadsheet
with one column for the dependent variable and one or more
columns for the independent variables. From the data tab, data
analysis containing various analysis tools was selected. The
regression analysis was chosen where the selected input of the
y range was the BGL outcome and the inputs of the x range
were meals consumed and insulin administered. A new
worksheet tab appeared, giving the summary output of the
regression statistics and other relevant information. The
probability value (P value) and coefficient of determination

(R2) are important statistical measures used in regression
analysis. The P value was used to test the research hypothesis
(whether to reject or support the null hypothesis). A small P
value (P<.05) indicates that the relationship between the

variables is significant and the null hypothesis is rejected. R2

measures how much the independent variables explain the

variation in the dependent variable. A high R2 value indicates
a better fit of the model to the data.
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Results

Simulation of Meal Disturbances
The amount of food consumed during a meal, especially
carbohydrates, has been shown to impact the meal rate directly.
When people consume larger meals, they tend to eat at a slower
rate, taking more time to chew and swallow their food. This is
likely because larger meals require more time and effort to eat,
resulting in a reduced meal rate as opposed to smaller meals
[17]. Besides, the meal duration also has an impact on the meal
rate. A shorter meal duration is associated with a faster meal
rate than a longer one [18]. The calculation of the meal rate was
referred to in [19]. The meal rates were determined by dividing
the total carbohydrates (in grams of carbohydrates) by meal
duration (in minutes).

The meal rate calculation is as follows:

Therefore, take patient 1 as an example:

The same thing applies to other meals for all patients and is
summarized in Table 7. All patients consumed each meal at a
different duration between 10 to 30 minutes. The simulation
started at 5 AM, and patients had their first meal at least 1 hour
after, that is, at 6 AM and onward.

Table 7. Meal rates for patients 1-3.

Meal rate (g/min)Carbohydrates (g)Meal duration (min)Meal

Patient 1

1.203630Breakfast

1.203630Lunch

1.574730Dinner

Patient 2

3.003010Breakfast

2.054120Lunch

2.454920Dinner

Patient 3

2.246730Breakfast

12.4012410Lunch

3.004715Dinner

Based on the table, patient 1 has a fixed meal duration of 30
minutes for each meal. Although patient 1 consumed a smaller
meal amount, patient 1 had the lowest meal rate due to longer
meal duration. Patient 2 also had a fixed meal duration of 20
minutes, except for breakfast, which took only 10 minutes. The
meal rate for patient 2 was comparatively similar to patient 1
since the meal amount and duration were quite close to one
another. Patient 3 did not have a fixed meal duration, varying
between 10 to 30 minutes for each meal. Patient 3 also

consumed the largest meal in a shorter duration during lunch,
thus having the largest meal rate.

The Effect of Meal Disturbances on BGL Profiles
Between Clinical and In-Silico Works for Patient 1
In this section, in-silico works of BGLs with three meals were
performed for patient 1. This BGL profile between clinical and
in-silico works was compared and analyzed. The BGL profile
was simulated using the improved Hovorka equations model.
The patients’ premeal and postmeal BGLs in clinical works are
shown in Table 8.

Table 8. Blood glucose reading for patient 1 in 24 hours.

Blood glucose level (mmol/L)Meal

PostmealPremeal

10.16.3Breakfast

19.315.2Lunch

17.812.2Dinner

Figure 5 shows the BGL profile in a day for patient 1 for both
clinical and in-silico works. Each peak shown in the graphs is
the BGL fluctuation during breakfast, lunch, and dinner. The

red line represents the normoglycemic range of 4.0 to 7.0
mmol/L. The blue and orange lines represent BGL profiles for
in-silico and clinical works, respectively.
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Figure 5. Blood glucose profile in a day between clinical and in-silico works for patient 1.

As shown in Figure 5, during the fasting stage (or no meal
disturbances), patient 1 in the clinical work recorded a BGL
value of 6.3 mmol/L; whereas in the in-silico work, it was 6.9
mmol/L. Initially, the BGL trends were similar during the first
3 hours. The BGL then fluctuated during breakfast, lunch, and
dinner. However, the BGL in the in-silico work managed to
achieve the normoglycemic range a few hours past the meal, as
opposed to the patient in the clinical work who experienced
hyperglycemia most of the day and only achieved
normoglycemia for 18.37% of the time (ie, during breakfast).
The average BGLs for the patient in the clinical and in-silico

works were 13.21 mmol/L and 5.74 mmol/L, respectively. The
highest BGL recorded in the clinical trials was 19.30 mmol/L
post lunch. In the in-silico work, the highest BGL recorded was
9.31 mmol/L post dinner and normoglycemia was achieved
79.59% of the time.

The Effect of Meal Disturbances on BGL Profiles
Between Clinical and In-Silico Works for Patient 2
In this section, in-silico works of BGL with three meals were
performed for patient 2 and then compared and analyzed with
the clinical works. The patient’s premeal and postmeal BGLs
in the clinical works are shown in Table 9.

Table 9. Blood glucose reading for patient 2 for 24 hours.

Blood glucose level (mmol/L)Meal

PostmealPremeal

9.27.2Breakfast

7.89.2Lunch

6.57.8Dinner

Figure 6 shows the BGL profile in a day for patient 2 for both
clinical and in-silico works. As shown in the figure, the BGLs
recorded for clinical and in-silico works at the fasting stage
were 7.2 mmol/L and 6.9 mmol/L, respectively. It can be
observed that the BGL profiles are quite similar in both works,
especially post dinner. The average BGLs recorded for the
patient in the clinical and in-silico works were 7.73 mmol/L
and 5.29 mmol/L, respectively. The highest BGL recorded for

patient 2 in the clinical work was 9.2 mmol/L, while in the
in-silico work, it was 7.9 mmol/L. Patient 2 in the in-silico work
stayed in the normoglycemic range for 87.76% of the time
compared to the clinical work, which was 30.61% of the time.
Even though patient 2 in the clinical work was unable to attain
a longer duration of normoglycaemia, the BGL remained
relatively low and closer to the normoglycemic range throughout
the day.
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Figure 6. Blood glucose profile in a day between clinical and in-silico works for patient 2.

The Effect of Meal Disturbances on BGL Profiles
Between Clinical and In-Silico Works for Patient 3
The in-silico works of BGL versus time with three meals were
then compared and analyzed with the clinical works of patient

3. The patient’s premeal and postmeal BGL in the clinical works
are shown in Table 10.

Table 10. Blood glucose reading for patient 3 for 24 hours.

Blood glucose level (mmol/L)Meal

PostmealPremeal

10.311.2Breakfast

14.310.3Lunch

9.314.3Dinner

Figure 7 shows the BGL profile in a day for patient 3 for both
clinical and in-silico works similar to the previous two patients.
Initially, the BGLs recorded for the clinical and in-silico works
were 11.2 mmol/L and 6.9 mmol/L, respectively. Here, one can
observe that the postmeal BGLs are similar in both works.
Throughout the day, the patient in the clinical work experienced
hyperglycemia and was unable to reach the normoglycemic

range, with the lowest BGL recorded being only 9.3 mmol/L.
Conversely, normoglycemic range for the patient in the in-silico
work was achieved 71.43% of the time. The average BGLs for
patients in the clinical and in-silico works were 11.00 mmol/L
and 6.22 mmol/L, respectively. The highest BGL recorded in
the clinical and in-silico works were 14.3 mmol/L and 11.6
mmol/L, respectively.
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Figure 7. Blood glucose profile in a day between clinical and in-silico works for patient 3.

Optimum Bolus Insulin for Blood Glucose Regulations
Bolus insulin is used to control BGL at mealtime. The best time
for insulin injection depends on the type of insulin used and the
individual’s need to achieve optimal BGL targets and reduce
diabetes complications. The insulin is typically injected
subcutaneously, either with a syringe or an insulin pen, and
taken shortly before or after a meal [20]. The amount of bolus
insulin needed depends on factors such as age, body weight,
the amount of carbohydrates in the meal consumed, insulin
sensitivity, and physical activity [21-23]. These factors help
patients to determine the appropriate dose of bolus insulin
needed.

Patients in the clinical work were given insulin during mealtime
as opposed to the in-silico work in which the insulin was injected
30 minutes before a meal. Additionally, it is important to
consider the timing of bolus insulin administration. Giving bolus
insulin too early before a meal or too late after a meal can result
in hypoglycemia and hyperglycemia, respectively. So, the bolus
insulin administration was timed appropriately to match the
timing of carbohydrate intake.

In this study, all patients used rapid-acting insulin to manage
their BGL during mealtime to ensure their BGL would not
deviate too far from the normoglycemic range (ie, 4.0-7.0
mmol/L) after each meal. Table 11 summarizes the amount of
bolus insulin administered for all patients in the in-silico work.

Table 11. Amount of bolus insulin administered.

Bolus insulin (mU/min)Meal

Patient 3Patient 2Patient 1

100.0266.6783.33Breakfast

83.3350.0133.33Lunch

66.6733.3316.67Dinner

Data Analysis for Patients
As for the data analysis of patients between clinical and in-silico
works, an MLR was used to model the relationship between
meals, insulin, and BGL. The probability value (P value) is an

important statistical element used to assess the significance of
the relationship between these variables as well as to evaluate
the accuracy of the simulation results. Table 12 summarizes the
data analysis between clinical and in-silico works for all patients.
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Table 12. Data analysis between clinical and in-silico works for all patients.

P value

In-silico workClinical work

4.17 × 10–72.44 × 10–6Patient 1

4.14 × 10–63.37 × 10–6Patient 2

9.96 × 10–53.72 × 10–7Patient 3

Discussion

Principal Findings
Observing the BGL trend for all patients in both works, the
in-silico work performed better in managing BGLs as compared
to the clinical work. Patients in the clinical work rarely achieved
the glycemic target, 4.0 to 7.0 mmol/L. Patients 1 and 2 only
achieved the target range during the morning and evening,
respectively, whereas patient 3 did not achieve the target at all.
The patients in the in-silico work were able to achieve the
glycemic target more than 70% of the time as compared to the
clinical work, which was less than 50% of the time.

The comparison of BGL against time between clinical and
in-silico works can be challenging, especially when clinical
data is limited, and, in this case, a continuous glucose monitoring
(CGM) device is not used. Thus, the BGL profiles are different
since patients in the clinical work used conventional methods
to monitor their BGL (ie, SMBG and MDI); therefore, only a
snapshot of BGLs at a particular time is available for comparison
as seen in Figures 5-7. Studies have shown that the use of a
CGM device can improve the time in range in clinical settings,
thus improving the BGL profiles [24,25].

In this case, the only available data point was the focus since
the clinical data was limited and did not cover the entire time
span. While BGL simulations can help predict how the BGL of
a patient with T1D may change under different conditions, they
are not always accurate. This is because the mathematical
models used in the simulations are based on assumptions about
how the body works, and these assumptions may not always
hold for every individual. Additionally, the simulation may not
consider all the complex factors that can affect BGLs, such as
exercise, stress, or illness. BGL monitoring can also be subjected
to errors and variability in clinical settings. Factors such as the
accuracy of the glucose meter or sensor, the timing and
frequency of measurements, and the variability of patients’
responses to interventions (eg, meals, physical activities, and
medication) can all affect the reliability and accuracy of clinical
BGL monitoring.

Based on Table 11, all patients were injected with more insulin
in the morning, and the daily doses continued to decrease.
Although the insulin sensitivity varies depending on the time
of the day with reduced sensitivity in the evening [26,27], it can
be observed that these patients have low insulin sensitivity in
the morning; hence, they require more insulin doses to cater to
the sudden BGL fluctuation. Patients’ insulin sensitivity
increases at lunch and dinner, as they require less bolus insulin
to regulate the BGL. Despite larger bolus insulin doses given
before mealtime, there is still a peak shortly after the meal is

consumed, referring to Figures 5-7. Since the time for glucose
absorption (tmax,G=40 minutes) is smaller than the time for
insulin absorption to take effect (tmax,I=55 minutes), the glucose
reaches the bloodstream sooner than the insulin, although insulin
is infused earlier.

Among all patients, patient 3 injected the most amount of insulin
compared to others since patient 3 weighed the heaviest, besides
consuming the largest total amount of meals. Since increased
body weight decreases insulin sensitivity, the patient’s
requirement for bolus insulin also increased [28]. In contrast,
patients 1 and 2 in the in-silico work required less bolus insulin
to control BGLs than patient 3 as they had lighter body weights
and consumed meals in smaller portions. Their BGLs in the
in-silico work only deviated slightly above the normoglycemic
range throughout the day and were relatively more stable.

The probability value or P value is a statistical measure that
indicates the probability of obtaining the observed results if the
null hypothesis is true. The value is between 0 to 1. A P value
<.05 is often considered statistically significant, meaning there
is strong evidence against the null hypothesis, so the hypothesis
is rejected. Based on Table 12, all patients in both clinical and
in-silico works had a low P value (P<.001), which indicates
that the variables are significant. However, when a comparison
was made on the BGL profile, both profiles were not comparable
due to different methodologies adopted in the design of the
study.

Limitations of the Study
There are two main limitations discovered from the study, which
in turn, make it infeasible to address the goal of determining
the accuracy and effectiveness of the in-silico model in
mimicking real-world BGL dynamics. First, different protocols
and conditions were adopted in the methodology for the clinical
and simulation works. As stated earlier, the open-loop therapy
was used in the clinical work for evaluation purposes, whereas
the closed-loop algorithm with eMPC was used in the in-silico
test. To address this limitation for future work, it is essential to
modify the simulation of the model to make the results more
comparable with the clinical data. For instance, it is suggested
that in the simulation work, the improved Hovorka equations
model could be simulated using the same bolus, basal insulin,
and meal carbohydrates used in the clinical trial. By doing so,
they could compare the model output with each glucose
measurement, preferably when CGM is available at our clinic
for future use.

Second, the reported information was insufficient to reproduce
the calculation of the optimal bolus in the in-silico simulations.
The insulin bolus was computed by trial and error as
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programmed earlier in its closed-loop algorithm. Since one of
the main goals of the study is to determine the optimal bolus
insulin, it would be advisable to detail the method followed to
calculate it in the development of its new control algorithm for
future works.

Conclusions
Through in-silico work using the improved Hovorka equations
model and eMPC, the optimal amount of bolus insulin required
to maintain BGLs within the normoglycemic range for
adolescents with T1D has been determined. This approach
demonstrates promising potential for precise insulin dosing
strategies that aim to achieve stable glycemic control in
real-world clinical scenarios. It was observed that patients had
less insulin sensitivity in the morning, thus more bolus insulin
was administered, and the amount gradually decreased
throughout the day. The optimum bolus insulin for patient 1
was 83.33, 33.33, and 16.67 mU/min; patient 2 was 66.67, 50.01,
and 33.33 mU/min; and patient 3 was 100.02, 83.33, and 66.67
mU/min for breakfast, lunch, and dinner, respectively.

Based on the comparison of BGL profiles between both clinical
and in-silico works, patients in the clinical works experienced
hyperglycemia most of the time and achieved the
normoglycemic range less than 50% of the time. Conversely,
there is a significantly increased time spent in the
normoglycemic range for patients in the in-silico works using
the improved Hovorka equations model with patients 1, 2, and
3 being in a normoglycemic range 79.59%, 87.76%, and 71.43%
of the time, respectively. In conclusion, the in-silico work using
the improved Hovorka equations model was not comparable to
the clinical works to simulate BGLs with meal disturbances for
people with T1D due to different methodologies adopted for
both works as well as insufficient information for reproducing
the calculation of the optimal bolus in the in-silico simulations.
It is therefore recommended to, first, modify the simulation
work of the improved model using the same bolus, basal insulin,
and meal carbohydrates used in the clinical trial and, second,
detail the method followed to calculate it in the development
of a new control algorithm for future work.
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